@article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} } @article{EilersHeger2019, author = {Eilers, Elisabeth Johanna and Heger, Tina}, title = {Past Competition Affects Offspring Foliar Terpenoid Concentrations, Seed Traits, and Fitness in the Invasive Forb Erodium cicutarium (Geraniaceae)}, series = {Frontiers in Ecology and Evolution}, volume = {7}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2019.00392}, pages = {12}, year = {2019}, abstract = {(1) Environmental conditions experienced in the past may lead to intraspecific differences in ecological and chemical traits of plants, which likely affect future responses to altered or new environments. Whether competition by neighbors is such a trait-shaping factor is not yet well-known. We aimed to understand how the level of ancestral plant competition affects traits related to plant fitness and resource allocation, reproduction, and (phyto-)toxin accumulation in offspring, and whether a potential differentiation in these traits can be found in different geographic origins of which one belongs to the native and one to the invaded range. (2) We compared differentiation of the following traits in offspring plants of multiple populations in Erodium cicutarium (Geraniaceae): biomass, seed production, seed traits related to dispersal and germination, and concentrations of foliar mono- and sesquiterpenes. We tested the allelopatic potential of aqueous extracts of the same E. cicutarium plants on seeds of five different plant families. (3) In plants originating from populations that experienced high levels of competition, we found twice as high monoterpene concentrations. These plants also produced more biomass and a higher proportion of ripe to unripe seeds until harvesting. Seeds originating from high competition sites were shorter. Aqueous E. cicutarium leaf extracts with high terpenoid content reduced radicle length of Zea mays and radicle and hypocotyl length of E. cicutarium seedlings. (4) The results of this study provide first evidence that the surrounding vegetation may shape chemo-ecological plant traits that may be fundamental for competitive ability. Our study calls for more research testing whether competition experienced in the native range may lead to an enhanced capability of plants to establish populations and spread in a new range.}, language = {en} }