@phdthesis{Jozefczuk2009, author = {J{\´o}zefczuk, Szymon}, title = {"Escherichia coli" stress response on the level of transcriptome and metabolome}, pages = {XV, 121 Bl. : graph. Darst.}, year = {2009}, language = {en} } @phdthesis{Schindler2021, author = {Schindler, Eva Marie}, title = {"What we have done is just to put the people in form of a structure"}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 288}, year = {2021}, abstract = {Participation has become an orthodoxy in the field of development, an essential element of projects and programmes. This book analyses participation in development interventions as an institutionalised expectation - a rationalized myth - and examines how organisations on different levels of government process it. At least two different objectives of participation are appropriate and legitimate for international organisations in the field: the empowerment of local beneficiaries and the achievement of programme goals. Both integrate participatory forums into the organisational logic of development interventions. Local administrations react to the institutionalised expectation with means-ends decoupling, where participatory forums are implemented superficially but de facto remain marginalised in local administrative processes and activities. The book furthermore provides a thick description of the organisationality of participation in development interventions. Participatory forums are shown to be a form of partial organisation. They establish an order in the relationship between administrations and citizens through the introduction of rules and the creation of a defined membership. At the same time, this order is found to be fragile and subject to criticism and negotiation.}, language = {en} } @phdthesis{Kneis2013, author = {Kneis, Philipp}, title = {(S)aged by culture : Representations of old age in american indian literature and culture}, publisher = {Peter Lang Edition}, address = {Frankfurt am Main, New York}, isbn = {978-3-631-63853-8}, pages = {298 S.}, year = {2013}, language = {en} } @phdthesis{Bendadani2015, author = {Bendadani, Carolin}, title = {1-Methylpyren: Biotransformation und Gentoxizit{\"a}t}, school = {Universit{\"a}t Potsdam}, pages = {188}, year = {2015}, language = {en} } @phdthesis{Ehrig2017, author = {Ehrig, Sebastian}, title = {3D curvature and its role on tissue organization}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2017}, abstract = {Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces.}, language = {en} } @phdthesis{Balk2015, author = {Balk, Maria}, title = {3D structured shape-memory hydrogels with enzymatically-induced shape shifting}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2015}, language = {en} } @phdthesis{Stephan2023, author = {Stephan, Mareike Sophia}, title = {A bacterial mimetic system to study bacterial inactivation and infection}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2023}, abstract = {The emerging threat of antibiotic-resistant bacteria has become a global challenge in the last decades, leading to a rising demand for alternative treatments for bacterial infections. One approach is to target the bacterial cell envelope, making understanding its biophysical properties crucial. Specifically, bacteriophages use the bacterial envelope as an entry point to initiate infection, and they are considered important building blocks of new antibiotic strategies against drug-resistant bacteria.. Depending on the structure of the cell wall, bacteria are classified as Gram-negative and Gram-positive. Gram-negative bacteria are equipped with a complex cell envelope composed of two lipid membranes enclosing a rigid peptidoglycan layer. The synthesis machinery of the Gram-negative cell envelope is the target of antimicrobial agents, including new physical sanitizing procedures addressing the outer membrane (OM). It is therefore very important to study the biophysical properties of the Gram-negative bacterial cell envelope. The high complexity of the Gram-negative OM sets the demand for a model system in which the contribution of individual components can be evaluated separately. In this respect, giant unilamellar vesicles (GUVs) are promising membrane systems to study membrane properties while controlling parameters such as membrane composition and surrounding medium conditions. The aim of this work was to develop methods and approaches for the preparation and characterization of a GUV-based membrane model that mimics the OM of the Gram-negative cell envelope. A major component of the OM is the lipopolysaccharide (LPS) on the outside of the OM heterobilayer. The vesicle model was designed to contain LPS in the outer leaflet and lipids in the inner leaflet. Furthermore, the interaction of the prepared LPS-GUVs with bacteriophages was tested. LPS containing GUVs were prepared by adapting the inverted emulsion technique to meet the challenging properties of LPS, namely their high self-aggregation rate in aqueous solutions. Notably, an additional emulsification step together with the adaption of solution conditions was employed to asymmetrically incorporate LPS containing long polysaccharide chains into the artificial membranes. GUV membrane asymmetry was verified with a fluorescence quenching assay. Since the necessary precautions for handling the quenching agent sodium dithionite are often underestimated and poorly described, important parameters were tested and identified to obtain a stable and reproducible assay. In the context of varied LPS incorporation, a microscopy-based technique was introduced to determine the LPS content on individual GUVs and to directly compare vesicle properties and LPS coverage. Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity. Employing LPS-GUVs we could demonstrate that a Salmonella bacteriophage bound with high specificity to its LPS receptor when presented at the GUV surface, and that the number of bound bacteriophages scaled with the amount of presented LPS receptor. In addition to binding, the bacteriophages were able to eject their DNA into the vesicle lumen. LPS-GUVs thus provide a starting platform for bottom-up approaches for the generation of more complex membranes, in which the effects of individual components on the membrane properties and the interaction with antimicrobial agents such as bacteriophages could be explored.}, language = {en} } @phdthesis{ColpanZenginoglu2007, author = {Colpan Zenginoglu, Anil}, title = {A conformal approach to numerical calculations of asymptotically flat spacetimes}, address = {Potsdam}, pages = {101 S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Hennemann2012, author = {Hennemann, Anja}, title = {A context-sensitive and funktional approach to evidentiality in Spanish or why evidentiality needs a superordinate category}, series = {Potsdam Linguistic Investigations}, volume = {10}, journal = {Potsdam Linguistic Investigations}, publisher = {Peter Lang}, address = {Frankfurt am Main, New York}, isbn = {978-3-631-62636-8}, pages = {462 S.}, year = {2012}, language = {en} } @phdthesis{Luckow2009, author = {Luckow, Andr{\´e}}, title = {A dependable middleware for enhancing the fault tolerance of distributed computations in grid environments}, address = {Potsdam}, pages = {235 S.}, year = {2009}, language = {en} }