@article{GruenebergerSchmidtJahnetal.2016, author = {Gr{\"u}neberger, Anja Maria and Schmidt, Christian and Jahn, Sandro and Rhede, Dieter and Loges, Anselm and Wilke, Max}, title = {Interpretation of Raman spectra of the zircon-hafnon solid solution}, series = {European journal of mineralogy}, volume = {28}, journal = {European journal of mineralogy}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0935-1221}, doi = {10.1127/ejm/2016/0028-2551}, pages = {721 -- 733}, year = {2016}, abstract = {Zircon (ZrSiO4), hafnon (HfSiO4) and five intermediate compositions were synthesized from a Pb silicate melt. The resulting crystals were 20-300 mu m in size and displayed sector and growth zoning. Raman spectra were acquired at locations in the sample for which preceding electron microprobe (EMP) analyses revealed sufficient compositional homogeneity. The dataset documents shifts of Raman bands with changing composition. In this study, bands that have previously not been reported were found for the intermediate compositions and for pure hafnon, in particular at wavenumbers less than 200 cm(-1). For these external modes, the dataset provides new insight into the compositional dependence of their frequencies. Density-functional theory calculations support the observations and are used for a detailed interpretation of the spectra. The pitfalls of the EMP analysis along the zircon-hafnon join are highlighted.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} }