@phdthesis{Schlossarek2023, author = {Schlossarek, Dennis}, title = {Identification of dynamic protein-metabolite complexes in saccharomyces cerevisiae using co-fractionation mass spectrometry}, doi = {10.25932/publishup-58282}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582826}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2023}, abstract = {Cells are built from a variety of macromolecules and metabolites. Both, the proteome and the metabolome are highly dynamic and responsive to environmental cues and developmental processes. But it is not their bare numbers, but their interactions that enable life. The protein-protein (PPI) and protein-metabolite interactions (PMI) facilitate and regulate all aspects of cell biology, from metabolism to mitosis. Therefore, the study of PPIs and PMIs and their dynamics in a cell-wide context is of great scientific interest. In this dissertation, I aim to chart a map of the dynamic PPIs and PMIs across metabolic and cellular transitions. As a model system, I study the shift from the fermentative to the respiratory growth, known as the diauxic shift, in the budding yeast Saccharomyces cerevisiae. To do so, I am applying a co-fractionation mass spectrometry (CF-MS) based method, dubbed protein metabolite interactions using size separation (PROMIS). PROMIS, as well as comparable methods, will be discussed in detail in chapter 1. Since PROMIS was developed originally for Arabidopsis thaliana, in chapter 2, I will describe the adaptation of PROMIS to S. cerevisiae. Here, the obtained results demonstrated a wealth of protein-metabolite interactions, and experimentally validated 225 previously predicted PMIs. Applying orthogonal, targeted approaches to validate the interactions of a proteogenic dipeptide, Ser-Leu, five novel protein-interactors were found. One of those proteins, phosphoglycerate kinase, is inhibited by Ser-Leu, placing the dipeptide at the regulation of glycolysis. In chapter 3, I am presenting PROMISed, a novel web-tool designed for the analysis of PROMIS- and other CF-MS-datasets. Starting with raw fractionation profiles, PROMISed enables data pre-processing, profile deconvolution, scores differences in fractionation profiles between experimental conditions, and ultimately charts interaction networks. PROMISed comes with a user-friendly graphic interface, and thus enables the routine analysis of CF-MS data by non-computational biologists. Finally, in chapter 4, I applied PROMIS in combination with the isothermal shift assay to the diauxic shift in S. cerevisiae to study changes in the PPI and PMI landscape across this metabolic transition. I found a major rewiring of protein-protein-metabolite complexes, exemplified by the disassembly of the proteasome in the respiratory phase, the loss of interaction of an enzyme involved in amino acid biosynthesis and its cofactor, as well as phase and structure specific interactions between dipeptides and enzymes of central carbon metabolism. In chapter 5, I am summarizing the presented results, and discuss a strategy to unravel the potential patterns of dipeptide accumulation and binding specificities. Lastly, I recapitulate recently postulated guidelines for CF-MS experiments, and give an outlook of protein interaction studies in the near future.}, language = {en} } @phdthesis{Bishop2022, author = {Bishop, Christopher Allen}, title = {Influence of dairy intake on odd-chain fatty acids and energy metabolism}, doi = {10.25932/publishup-56154}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561541}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104, xv}, year = {2022}, abstract = {As of late, epidemiological studies have highlighted a strong association of dairy intake with lower disease risk, and similarly with an increased amount of odd-chain fatty acids (OCFA). While the OCFA also demonstrate inverse associations with disease incidence, the direct dietary sources and mode of action of the OCFA remain poorly understood. The overall aim of this thesis was to determine the impact of two main fractions of dairy, milk fat and milk protein, on OCFA levels and their influence on health outcomes under high-fat (HF) diet conditions. Both fractions represent viable sources of OCFA, as milk fats contain a significant amount of OCFA and milk proteins are high in branched chain amino acids (BCAA), namely valine (Val) and isoleucine (Ile), which can produce propionyl-CoA (Pr-CoA), a precursor for endogenous OCFA synthesis, while leucine (Leu) does not. Additionally, this project sought to clarify the specific metabolic effects of the OCFA heptadecanoic acid (C17:0). Both short-term and long-term feeding studies were performed using male C57BL/6JRj mice fed HF diets supplemented with milk fat or C17:0, as well as milk protein or individual BCAA (Val; Leu) to determine their influences on OCFA and metabolic health. Short-term feeding revealed that both milk fractions induce OCFA in vivo, and the increases elicited by milk protein could be, in part, explained by Val intake. In vitro studies using primary hepatocytes further showed an induction of OCFA after Val treatment via de novo lipogenesis and increased α-oxidation. In the long-term studies, both milk fat and milk protein increased hepatic and circulating OCFA levels; however, only milk protein elicited protective effects on adiposity and hepatic fat accumulation—likely mediated by the anti-obesogenic effects of an increased Leu intake. In contrast, Val feeding did not increase OCFA levels nor improve obesity, but rather resulted in glucotoxicity-induced insulin resistance in skeletal muscle mediated by its metabolite 3-hydroxyisobutyrate (3-HIB). Finally, while OCFA levels correlated with improved health outcomes, C17:0 produced negligible effects in preventing HF-diet induced health impairments. The results presented herein demonstrate that the beneficial health outcomes associated with dairy intake are likely mediated through the effects of milk protein, while OCFA levels are likely a mere association and do not play a significant causal role in metabolic health under HF conditions. Furthermore, the highly divergent metabolic effects of the two BCAA, Leu and Val, unraveled herein highlight the importance of protein quality.}, language = {en} } @misc{KuekenSommerYanevaRoderetal.2018, author = {K{\"u}ken, Anika and Sommer, Frederik and Yaneva-Roder, Liliya and Mackinder, Luke C.M. and H{\"o}hne, Melanie and Geimer, Stefan and Jonikas, Martin C. and Schroda, Michael and Stitt, Mark and Nikoloski, Zoran and Mettler-Altmann, Tabea}, title = {Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1122}, issn = {1866-8372}, doi = {10.25932/publishup-44635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446358}, pages = {25}, year = {2018}, abstract = {Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.}, language = {en} } @phdthesis{Banerjee2020, author = {Banerjee, Pallavi}, title = {Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers}, doi = {10.25932/publishup-48956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489561}, school = {Universit{\"a}t Potsdam}, pages = {xv, 141}, year = {2020}, abstract = {Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions - all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to "flop-down" on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a "lollipop". Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling.}, language = {en} } @misc{BiterovaEsmaeeliMoghaddamTabalvandaniAlanenetal.2018, author = {Biterova, Ekaterina and Esmaeeli Moghaddam Tabalvandani, Mariam and Alanen, Heli I. and Saaranen, Mirva and Ruddock, Lloyd W.}, title = {Structures of Angptl3 and Angptl4}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1048}, issn = {1866-8372}, doi = {10.25932/publishup-46794}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467943}, pages = {14}, year = {2018}, abstract = {Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34\% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease.}, language = {en} } @misc{LukanMachensColletal.2018, author = {Lukan, Tjaša and Machens, Fabian and Coll, Anna and Baebler, Špela and Messerschmidt, Katrin and Gruden, Kristina}, title = {Plant X-tender}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {990}, issn = {1866-8372}, doi = {10.25932/publishup-44628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446281}, pages = {21}, year = {2018}, abstract = {Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scarfree and sequence-independent multigene assembly strategy AssemblX,based on overlapdepended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science.}, language = {en} } @misc{LaemkeBaeurle2017, author = {L{\"a}mke, J{\"o}rn and B{\"a}urle, Isabel}, title = {Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {792}, issn = {1866-8372}, doi = {10.25932/publishup-43623}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436236}, pages = {11}, year = {2017}, abstract = {Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.}, language = {en} } @misc{MaZhangTurečkovaetal.2018, author = {Ma, Xuemin and Zhang, Youjun and Turečkov{\´a}, Veronika and Xue, Gang-Ping and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {787}, issn = {1866-8372}, doi = {10.25932/publishup-43764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437643}, pages = {17}, year = {2018}, abstract = {Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.}, language = {en} } @phdthesis{Markova2016, author = {Markova, Mariya}, title = {Metabolic and molecular effects of two different isocaloric high protein diets in subjects with type 2 diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394310}, school = {Universit{\"a}t Potsdam}, pages = {x, 127}, year = {2016}, abstract = {Ern{\"a}hrung stellt ein wichtiger Faktor in der Pr{\"a}vention und Therapie von Typ-2-Diabetes dar. Fr{\"u}here Studien haben gezeigt, dass Hochproteindi{\"a}ten sowohl positive als auch negative Effekte auf den Metabolismus hervorrufen. Jedoch ist unklar, ob die Herkunft des Proteins dabei eine Rolle spielt. In der LeguAN-Studie wurden die Effekte von zwei unterschiedlichen Hochproteindi{\"a}ten, entweder tierischer oder pflanzlicher Herkunft, bei Typ-2-Diabetes Patienten untersucht. Beide Di{\"a}ten enthielten 30 EN\% Proteine, 40 EN\% Kohlenhydrate und 30 EN\% Fette. Der Anteil an Ballaststoffen, der glyk{\"a}mischer Index und die Fettkomposition waren in beiden Di{\"a}ten {\"a}hnlich. Die Proteinaufnahme war h{\"o}her, w{\"a}hrend die Fettaufnahme niedriger im Vergleich zu den fr{\"u}heren Ern{\"a}hrungsgewohnheiten der Probanden war. Insgesamt f{\"u}hrten beide Di{\"a}tinterventionen zu einer Verbesserung der glyk{\"a}mischen Kontrolle, der Insulinsensitivit{\"a}t, des Leberfettgehalts und kardiovaskul{\"a}rer Risikomarkern ohne wesentliche Unterschiede zwischen den Proteintypen. In beiden Interventionsgruppen wurden die n{\"u}chternen Glukosewerte zusammen mit Indizes von Insulinresistenz in einem unterschiedlichen Ausmaß, jedoch ohne signifikante Unterschiede zwischen beiden Di{\"a}ten verbessert. Die Reduktion von HbA1c war ausgepr{\"a}gter in der pflanzlichen Gruppe, w{\"a}hrend sich die Insulinsensitivit{\"a}t mehr in der tierischen Gruppe erh{\"o}hte. Die Hochproteindi{\"a}ten hatten nur einen geringf{\"u}gigen Einfluss auf den postprandialen Metabolismus. Dies zeigte sich durch eine leichte Verbesserung der Indizes f{\"u}r Insulinsekretion, -sensitivit{\"a}t und -degradation sowie der Werte der freien Fetts{\"a}uren. Mit Ausnahme des Einflusses auf die GIP-Sekretion riefen die tierische und die pflanzliche Testmahlzeit {\"a}hnliche metabolische und hormonelle Antworten, trotz unterschiedlicher Aminos{\"a}urenzusammensetzung. Die tierische Hochproteindi{\"a}t f{\"u}hrte zu einer selektiven Zunahme der fettfreien Masse und Abnahme der Fettmasse, was nicht signifikant unterschiedlich von der pflanzlichen Gruppe war. Dar{\"u}ber hinaus reduzierten die Hochproteindi{\"a}ten den Leberfettgehalt um durchschnittlich 42\%. Die Reduktion des Leberfettgehaltes ging mit einer Verminderung der Lipogenese, der Lipolyse und des freien Fetts{\"a}ure Flux einher. Beide Interventionen induzierten einen moderaten Abfall von Leberenzymen im Blut. Die Reduktion des Leberfetts war mit einer verbesserten Glukosehom{\"o}ostase und Insulinsensitivit{\"a}t assoziiert. Blutlipide sanken in allen Probanden, was eventuell auf die niedrigere Fettaufnahme zur{\"u}ckzuf{\"u}hren war. Weiterhin waren die Spiegel an Harns{\"a}ure und Inflammationsmarkern erniedrigt unabh{\"a}ngig von der Proteinquelle. Die Werte des systolischen und diastolischen Blutdrucks sanken nur in der pflanzlichen Gruppe, was auf eine potentielle Rolle von Arginin hinweist. Es wurden keine Hinweise auf eine beeintr{\"a}chtigte Nierenfunktion durch die 6-w{\"o}chige Hochproteindi{\"a}ten beobachtet unabh{\"a}ngig von der Herkunft der Proteine. Serumkreatinin war nur in der pflanzlichen Gruppe signifikant reduziert, was eventuell an dem geringen Kreatingehalt der pflanzlichen Nahrungsmittel liegen k{\"o}nnte. Jedoch sind l{\"a}ngere Studien n{\"o}tig, um die Sicherheit von Hochproteindi{\"a}ten vollkommen aufkl{\"a}ren zu k{\"o}nnen. Des Weiteren verursachte keine der Di{\"a}ten eine Induktion des mTOR Signalwegs weder im Fettgewebe noch in Blutzellen. Die Verbesserung der Ganzk{\"o}rper-Insulinsensitivit{\"a}t deutete auch auf keine Aktivierung von mTOR und keine Verschlechterung der Insulinsensitivit{\"a}t im Skeletmuskel hin. Ein nennenswerter Befund war die erhebliche Reduktion von FGF21, einem wichtigen Regulator metabolischer Prozesse, um ungef{\"a}hr 50\% bei beiden Proteinarten. Ob hepatischer ER-Stress, Ammoniumniveau oder die Makron{\"a}hrstoffpr{\"a}ferenz hinter dem paradoxen Ergebnis stehen, sollte weiter im Detail untersucht werden. Entgegen der anf{\"a}nglichen Erwartung und der bisherigen Studienlage zeigte die pflanzlich-betonte Hochproteindi{\"a}t keine klaren Vorteile gegen{\"u}ber der tierischen Di{\"a}t. Der ausgepr{\"a}gte g{\"u}nstige Effekt des tierischen Proteins auf Insulinhom{\"o}ostase trotz des hohen BCAA-Gehaltes war sicherlich unerwartet und deutet darauf hin, dass bei dem l{\"a}ngeren Verzehr andere komplexe metabolische Adaptationen stattfinden. Einen weiteren Aspekt stellt der niedrigere Fettverzehr dar, der eventuell auch zu den Verbesserungen in beiden Gruppen beigetragen hat. Zusammenfassend l{\"a}sst sich sagen, dass eine 6-w{\"o}chige Di{\"a}t mit 30 EN\% Proteinen (entweder pflanzlich oder tierisch), 40 EN\% Kohlenhydraten und 30 EN\% Fetten mit weniger ges{\"a}ttigten Fetten zu metabolischen Verbesserungen bei Typ-2-Diabetes Patienten unabh{\"a}ngig von Proteinherkunft f{\"u}hrt.}, language = {en} } @misc{WessigBaderKlieretal.2016, author = {Wessig, Pablo and Bader, Denise and Klier, Dennis Tobias and Hettrich, Cornelia and Bier, Frank Fabian}, title = {Detecting carbohydrate-lectin interactions using a fluorescent probe based on DBD dyes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394382}, pages = {1235 -- 1238}, year = {2016}, abstract = {Herein we present an efficient synthesis of a biomimetic probe with modular construction that can be specifically bound by the mannose binding FimH protein - a surface adhesion protein of E. coli bacteria. The synthesis combines the new and interesting DBD dye with the carbohydrate ligand mannose via a Click reaction. We demonstrate the binding to E. coli bacteria over a large concentration range and also present some special characteristics of those molecules that are of particular interest for the application as a biosensor. In particular, the mix-and-measure ability and the very good photo-stability should be highlighted here.}, language = {en} }