@article{TianHerzschuhMischkeetal.2014, author = {Tian, Fang and Herzschuh, Ulrike and Mischke, Steffen and Schluetz, Frank}, title = {What drives the recent intensified vegetation degradation in Mongolia - Climate change or human activity?}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {10}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614540958}, pages = {1206 -- 1215}, year = {2014}, abstract = {This study examines the course and driving forces of recent vegetation change in the Mongolian steppe. A sediment core covering the last 55years from a small closed-basin lake in central Mongolia was analyzed for its multi-proxy record at annual resolution. Pollen analysis shows that highest abundances of planted Poaceae and highest vegetation diversity occurred during 1977-1992, reflecting agricultural development in the lake area. A decrease in diversity and an increase in Artemisia abundance after 1992 indicate enhanced vegetation degradation in recent times, most probably because of overgrazing and farmland abandonment. Human impact is the main factor for the vegetation degradation within the past decades as revealed by a series of redundancy analyses, while climate change and soil erosion play subordinate roles. High Pediastrum (a green algae) influx, high atomic total organic carbon/total nitrogen (TOC/TN) ratios, abundant coarse detrital grains, and the decrease of C-13(org) and N-15 since about 1977 but particularly after 1992 indicate that abundant terrestrial organic matter and nutrients were transported into the lake and caused lake eutrophication, presumably because of intensified land use. Thus, we infer that the transition to a market economy in Mongolia since the early 1990s not only caused dramatic vegetation degradation but also affected the lake ecosystem through anthropogenic changes in the catchment area.}, language = {en} } @misc{TianHerzschuhMischkeetal.2014, author = {Tian, Fang and Herzschuh, Ulrike and Mischke, Steffen and Schl{\"u}tz, Frank}, title = {What drives the recent intensified vegetation degradation in Mongolia}, series = {The Holocene}, journal = {The Holocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404201}, pages = {10}, year = {2014}, abstract = {This study examines the course and driving forces of recent vegetation change in the Mongolian steppe. A sediment core covering the last 55years from a small closed-basin lake in central Mongolia was analyzed for its multi-proxy record at annual resolution. Pollen analysis shows that highest abundances of planted Poaceae and highest vegetation diversity occurred during 1977-1992, reflecting agricultural development in the lake area. A decrease in diversity and an increase in Artemisia abundance after 1992 indicate enhanced vegetation degradation in recent times, most probably because of overgrazing and farmland abandonment. Human impact is the main factor for the vegetation degradation within the past decades as revealed by a series of redundancy analyses, while climate change and soil erosion play subordinate roles. High Pediastrum (a green algae) influx, high atomic total organic carbon/total nitrogen (TOC/TN) ratios, abundant coarse detrital grains, and the decrease of C-13(org) and N-15 since about 1977 but particularly after 1992 indicate that abundant terrestrial organic matter and nutrients were transported into the lake and caused lake eutrophication, presumably because of intensified land use. Thus, we infer that the transition to a market economy in Mongolia since the early 1990s not only caused dramatic vegetation degradation but also affected the lake ecosystem through anthropogenic changes in the catchment area.}, language = {en} } @article{HeineckeFletcherMischkeetal.2018, author = {Heinecke, Liv and Fletcher, W. J. and Mischke, Steffen and Tian, Fang and Herzschuh, Ulrike}, title = {Vegetation change in the eastern Pamir Mountains, Tajikistan, inferred from Lake Karakul pollen spectra of the last 28 kyr}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {511}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.08.010}, pages = {232 -- 242}, year = {2018}, abstract = {We present a pollen record for last 28 cal kyr BP from the eastern basin of Lake Karakul, the largest lake in Tajikistan, located in the eastern Pamir Mountains at 3915 m asl, a geographically complex region. The pollen record is dominated by Artemisia and Chenopodiaceae, while other taxa, apart from Poaceae, are present in low quantities and rarely exceed 5\% in total. Arboreal pollen occur predominantly from similar to 28 to similar to 13 cal kyr BP, but as likely no trees occurred in the high mountain regions of the eastern Pamir during this time due to the high altitude and cold climate, arboreal taxa are attributed to long distance transport, probably by the Westerlies, the dominant atmospheric circulation. Tree pollen influx decreases strongly after similar to 13 cal kyr BP, allowing the pollen spectra to be interpreted as a regional vegetation signal. We infer that from 27.6 to 19.4 cal kyr BP the eastern Pamir was dominated by dry mountain steppe with low vegetation cover, while from 19.0 to 13.6 cal kyr BP Artemisia values increase and Chenopodiaceae, most herb taxa, and inferred far distant input from arboreal taxa decrease. Between 12.9 and 6.7 cal kyr BP open steppe vegetation dominated with maximum values in Ephedra, and while steppe taxa still dominated the spectra from 5.4 to 1 cal kyr BP, meadow taxa start to increase. During the last millennium, alpine steppe and alpine meadows expanded and a weak human influence can be ascertained from the increase of Asteraceae and the occurrence of Plantago pollen in the spectra.}, language = {en} } @phdthesis{Tian2014, author = {Tian, Fang}, title = {Vegetation and environmental changes on millennial, centennial and decadal time-scales in central Mongolia and their driving forces}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2014}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{ZibulskiHerzschuhPestryakovaetal.2013, author = {Zibulski, Romy and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Wolter, Juliane and Mueller, S. and Schilling, N. and Wetterich, Sebastian and Schirrmeister, Lutz and Tian, Fang}, title = {River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia)}, series = {Biogeosciences}, volume = {10}, journal = {Biogeosciences}, number = {8}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-10-5703-2013}, pages = {5703 -- 5728}, year = {2013}, abstract = {The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070 degrees N, 113.921 degrees E; northern Yakutia, Siberia) has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed, revealing a community of Larix, shrubby Betula, and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The total organic carbon (TOC) content, TOC/TN (total nitrogen) ratio, grain size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association, dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snowmelt), characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e. g. Navicula vulpina), indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra) with the regional vegetation (inferred from pollen spectra) indicated that the moss association with Scorpidium scorpioides became established during relatively favourable climatic conditions, while the association dominated by Meesia triquetra occurred during periods of harsh climatic conditions. Our study revealed a strong riverine influence (in addition to climatic influences) on polygon development and the type of peat accumulated.}, language = {en} } @article{XuCaoTianetal.2014, author = {Xu, QingHai and Cao, Xianyong and Tian, Fang and Zhang, ShengRui and Li, YueCong and Li, ManYue and Li, Jie and Liu, YaoLiang and Liang, Jian}, title = {Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction}, series = {Science China}, volume = {57}, journal = {Science China}, number = {6}, publisher = {Science China Press}, address = {Beijing}, issn = {1674-7313}, doi = {10.1007/s11430-013-4738-7}, pages = {1254 -- 1266}, year = {2014}, abstract = {The Relative Pollen Productivities (RPPs) of common steppe species are estimated using Extended R-value (ERV) model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China. Artemisia, Chenopodiaceae, Poaceae, Cyperaceae, and Asteraceae are the dominant pollen types in pollen assemblages, reflecting the typical steppe communities well. The five dominant pollen types and six common types (Thalictrum, Iridaceae, Potentilla, Ephedra, Brassicaceae, and Ulmus) have strong wind transport abilities; the estimated Relevant Source Area of Pollen (RSAP) is ca. 1000 m when the sediment basin radius is set at 0.5 m. Ulmus, Artemisia, Brassicaceae, Chenopodiaceae, and Thalictrum have relative high RPPs; Poaceae, Cyperaceae, Potentilla, and Ephedra pollen have moderate RPPs; Asteraceae and Iridaceae have low RPPs. The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction. However, the RPPs of Asteraceae and Iridaceae are obviously underestimated, and those of Poaceae, Chenopodiaceae, and Ephedra are either slightly underestimated or slightly overestimated, suggesting that those RPPs should be considered with caution. These RPPs were applied to estimating plant abundances for two fossil pollen spectra (from the Lake Bayanchagan and Lake Haoluku) covering the Holocene in typical steppe area, using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae, Cyperaceae, and Artemisia plants flourished in this area before 6500-5600 cal yr BP, and then was replaced by present typical steppe.}, language = {en} } @article{TianCaoDallmeyeretal.2016, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Ni, Jian and Zhao, Yan and Wang, Yongbo and Herzschuh, Ulrike}, title = {Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {137}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.001}, pages = {33 -- 44}, year = {2016}, abstract = {We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} } @article{TianCaoDallmeyeretal.2017, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Zhao, Yan and Ni, Jian and Herzschuh, Ulrike}, title = {Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {156}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.11.027}, pages = {1 -- 11}, year = {2017}, abstract = {Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.}, language = {en} }