@misc{SpahnSachseSeissetal.2019, author = {Spahn, Frank and Sachse, Manuel and Seiss, Martin and Hsu, Hsiang-Wen and Kempf, Sascha and Horanyi, Mihaly}, title = {Circumplanetary Dust Populations}, series = {Space science reviews}, volume = {215}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-018-0577-3}, pages = {54}, year = {2019}, abstract = {We summarize the current state of observations of circumplanetary dust populations, including both dilute and dense rings and tori around the giant planets, ejecta clouds engulfing airless moons, and rings around smaller planetary bodies throughout the Solar System. We also discuss the theoretical models that enable these observations to be understood in terms of the sources, sinks and transport of various dust populations. The dynamics and resulting transport of the particles can be quite complex, due to the fact that their motion is influenced by neutral and plasma drag, radiation pressure, and electromagnetic forcesall in addition to gravity. The relative importance of these forces depends on the environment, as well as the makeup and size of the particles. Possible dust sources include the generation of ejecta particles by impacts, active volcanoes and geysers, and the capture of exogenous particles. Possible dust sinks include collisions with moons, rings, or the central planet, erosion due to sublimation and sputtering, even ejection and escape from the circumplanetary environment.}, language = {en} }