@misc{KovacsIonLopesetal.2019, author = {Kovacs, Robert and Ion, Alexandra and Lopes, Pedro and Oesterreich, Tim and Filter, Johannes and Otto, Philip and Arndt, Tobias and Ring, Nico and Witte, Melvin and Synytsia, Anton and Baudisch, Patrick}, title = {TrussFormer}, series = {The 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {The 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5971-9}, doi = {10.1145/3290607.3311766}, pages = {1}, year = {2019}, abstract = {We present TrussFormer, an integrated end-to-end system that allows users to 3D print large-scale kinetic structures, i.e., structures that involve motion and deal with dynamic forces. TrussFormer builds on TrussFab, from which it inherits the ability to create static large-scale truss structures from 3D printed connectors and PET bottles. TrussFormer adds movement to these structures by placing linear actuators into them: either manually, wrapped in reusable components called assets, or by demonstrating the intended movement. TrussFormer verifies that the resulting structure is mechanically sound and will withstand the dynamic forces resulting from the motion. To fabricate the design, TrussFormer generates the underlying hinge system that can be printed on standard desktop 3D printers. We demonstrate TrussFormer with several example objects, including a 6-legged walking robot and a 4m-tall animatronics dinosaur with 5 degrees of freedom.}, language = {en} }