@article{GholamrezaieScheckWenderothSippeletal.2018, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Sippel, Judith and Strecker, Manfred}, title = {Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean}, series = {Solid Earth}, volume = {9}, journal = {Solid Earth}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9529}, doi = {10.5194/se-9-139-2018}, pages = {139 -- 158}, year = {2018}, abstract = {Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.}, language = {en} } @article{IrrgangLantuitMansonetal.2018, author = {Irrgang, Anna Maria and Lantuit, Hugues and Manson, Gavin K. and G{\"u}nther, Frank and Grosse, Guido and Overduin, Pier Paul}, title = {Variability in rates of coastal change along the Yukon Coast, 1951 to 2015}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004326}, pages = {779 -- 800}, year = {2018}, abstract = {To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210-km length of the Yukon Territory coast in north-west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 +/- 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from -1.3 +/- 0.8 (1950s-1970s) to -0.5 +/- 0.6 m/a (1970s-1990s). This was followed by a significant increase in shoreline change to -1.3 +/- 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to -8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64-year-long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Plain Language Summary The Arctic is warming, but the impacts on its coasts are not well documented. To better understand the reaction of Arctic coasts to increasing environmental pressure, shoreline position changes along a 210-km length of the Yukon Territory coast in northwest Canada were investigated for the time period from 1951 to 2015. Shoreline positions were extracted from historical aerial images from the 1950s, 1970s, and 1990s and from satellite images from 2011. Additionally, measurements of shoreline positions from field sites were used to analyze coastal dynamics from 1991 to 2015. The mean shoreline change rate was -1.3 m/a between the 1950s and 1970s and followed by a decrease to -0.5 m/a between the 1970s to 1990s. This was followed by a significant increase in mean shoreline change rates again to -1.3 m/a in the 1990s to 2011 time period. This acceleration in erosion is confirmed by field measurements that indicate increased erosion rates at high local rates up to -8.9 m/a since 2006. Enhanced coastal erosion might, in turn, favor the buildup of gravel features, which have been growing in extent throughout the last six decades.}, language = {en} } @misc{SmithBookhagen2018, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia}, series = {active and passive microwave remote sensing for environmental monitoring II}, volume = {10788}, journal = {active and passive microwave remote sensing for environmental monitoring II}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-2160-2}, issn = {0277-786X}, doi = {10.1117/12.2323827}, pages = {8}, year = {2018}, abstract = {High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3)}, language = {en} } @techreport{ThiekenDierckDunstetal.2018, author = {Thieken, Annegret and Dierck, Julia and Dunst, Lea and G{\"o}pfert, Christian and Heidenreich, Anna and Hetz, Karen and Kern, Julia and Kern, Kristine and Lipp, Torsten and Lippert, Cordine and Meves, Monika and Niederhafner, Stefan and Otto, Antje and Rohrbacher, Christian and Schmidt, Katja and Strate, Leander and Stumpp, Inga and Walz, Ariane}, title = {Urbane Resilienz gegen{\"u}ber extremen Wetterereignissen - Typologien und Transfer von Anpassungsstrategien in kleinen Großst{\"a}dten und Mittelst{\"a}dten (ExTrass)}, organization = {Leibniz-Institut f{\"u}r Raumbezogene Sozialforschung, adelphi research gGmbH}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416067}, pages = {102}, year = {2018}, abstract = {Weltweit verursachen St{\"a}dte etwa 70 \% der Treibhausgasemissionen und sind daher wichtige Akteure im Klimaschutz bzw. eine wichtige Zielgruppe von Klimapolitiken. Gleichzeitig sind St{\"a}dte besonders stark von m{\"o}glichen Auswirkungen des Klimawandels betroffen: Insbesondere extreme Wetterereignisse wie Hitzewellen oder Starkregenereignisse mit {\"U}berflutungen verursachen in St{\"a}dten hohe Sachsch{\"a}den und wirken sich negativ auf die Gesundheit der st{\"a}dtischen Bev{\"o}lkerung aus. Daher verfolgt das Projekt ExTrass das Ziel, die st{\"a}dtische Resilienz gegen{\"u}ber extremen Wetterereignissen in enger Zusammenarbeit mit Stadtverwaltungen, Strukturen des Bev{\"o}lkerungsschutzes und der Zivilgesellschaft zu st{\"a}rken. Im Fokus stehen dabei (kreisfreie) Groß- und Mittelst{\"a}dte mit 50.000 bis 500.000 Einwohnern, insbesondere die Fallstudienst{\"a}dte Potsdam, Remscheid und W{\"u}rzburg. Der vorliegende Bericht beinhaltet die Ergebnisse der 14-monatigen Definitionsphase von ExTrass, in der vor allem die Abstimmung eines Arbeitsprogramms im Mittelpunkt stand, das in einem nachfolgenden dreij{\"a}hrigen Forschungsprojekt (F+E-Phase) gemeinsam von Wissenschaft und Praxispartnern umgesetzt werden soll. Begleitend wurde eine Bestandsaufnahme von Klimaanpassungs- und Klimaschutzstrategien/-pl{\"a}nen in 99 deutschen Groß- und Mittelst{\"a}dten vorgenommen. Zudem wurden f{\"u}r Potsdam und W{\"u}rzburg Pfadanalysen f{\"u}r die Klimapolitik durchgef{\"u}hrt. Darin wird insbesondere die Bedeutung von Schl{\"u}sselakteuren deutlich. Weiterhin wurden im Rahmen von Stakeholder-Workshops Anpassungsherausforderungen und aktuelle Handlungsbedarfe in den Fallstudienst{\"a}dten identifiziert und L{\"o}sungsans{\"a}tze erarbeitet, die in der F+E-Phase entwickelt und getestet werden sollen. Neben Maßnahmen auf gesamtst{\"a}dtischer Ebene und auf Stadtteilebene wurden Maßnahmen angestrebt, die die Risikowahrnehmung, Vorsorge und Selbsthilfef{\"a}higkeit von Unternehmen und Bev{\"o}lkerung st{\"a}rken k{\"o}nnen. Daher wurde der Stand der Risikokommunikation in Deutschland f{\"u}r das Projekt aufgearbeitet und eine erste Evaluation von Risikokommunikationswerkzeugen durchgef{\"u}hrt. Der Bericht endet mit einer Kurzfassung des Arbeitsprogramms 2018-2021.}, language = {de} } @article{GoodwinMuddClubb2018, author = {Goodwin, Guillaume C. H. and Mudd, Simon M. and Clubb, Fiona J.}, title = {Unsupervised detection of salt marsh platforms}, series = {Earth surface dynamics}, volume = {6}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-239-2018}, pages = {239 -- 255}, year = {2018}, abstract = {Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94\% for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90\% for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.}, language = {en} } @phdthesis{Agarwal2018, author = {Agarwal, Ankit}, title = {Unraveling spatio-temporal climatic patterns via multi-scale complex networks}, doi = {10.25932/publishup-42395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423956}, school = {Universit{\"a}t Potsdam}, pages = {xxix, 153}, year = {2018}, abstract = {The climate is a complex dynamical system involving interactions and feedbacks among different processes at multiple temporal and spatial scales. Although numerous studies have attempted to understand the climate system, nonetheless, the studies investigating the multiscale characteristics of the climate are scarce. Further, the present set of techniques are limited in their ability to unravel the multi-scale variability of the climate system. It is completely plausible that extreme events and abrupt transitions, which are of great interest to climate community, are resultant of interactions among processes operating at multi-scale. For instance, storms, weather patterns, seasonal irregularities such as El Ni{\~n}o, floods and droughts, and decades-long climate variations can be better understood and even predicted by quantifying their multi-scale dynamics. This makes a strong argument to unravel the interaction and patterns of climatic processes at different scales. With this background, the thesis aims at developing measures to understand and quantify multi-scale interactions within the climate system. In the first part of the thesis, I proposed two new methods, viz, multi-scale event synchronization (MSES) and wavelet multi-scale correlation (WMC) to capture the scale-specific features present in the climatic processes. The proposed methods were tested on various synthetic and real-world time series in order to check their applicability and replicability. The results indicate that both methods (WMC and MSES) are able to capture scale-specific associations that exist between processes at different time scales in a more detailed manner as compared to the traditional single scale counterparts. In the second part of the thesis, the proposed multi-scale similarity measures were used in constructing climate networks to investigate the evolution of spatial connections within climatic processes at multiple timescales. The proposed methods WMC and MSES, together with complex network were applied to two different datasets. In the first application, climate networks based on WMC were constructed for the univariate global sea surface temperature (SST) data to identify and visualize the SSTs patterns that develop very similarly over time and distinguish them from those that have long-range teleconnections to other ocean regions. Further investigations of climate networks on different timescales revealed (i) various high variability and co-variability regions, and (ii) short and long-range teleconnection regions with varying spatial distance. The outcomes of the study not only re-confirmed the existing knowledge on the link between SST patterns like El Ni{\~n}o Southern Oscillation and the Pacific Decadal Oscillation, but also suggested new insights into the characteristics and origins of long-range teleconnections. In the second application, I used the developed non-linear MSES similarity measure to quantify the multivariate teleconnections between extreme Indian precipitation and climatic patterns with the highest relevance for Indian sub-continent. The results confirmed significant non-linear influences that were not well captured by the traditional methods. Further, there was a substantial variation in the strength and nature of teleconnection across India, and across time scales. Overall, the results from investigations conducted in the thesis strongly highlight the need for considering the multi-scale aspects in climatic processes, and the proposed methods provide robust framework for quantifying the multi-scale characteristics.}, language = {en} } @article{DealBraunBotter2018, author = {Deal, Eric and Braun, Jean and Botter, Gianluca}, title = {Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004393}, pages = {744 -- 778}, year = {2018}, abstract = {Due to the challenges in upscaling daily climatic forcing to geological time, physically realistic models describing how rainfall drives fluvial erosion are lacking. To bridge this gap between short-term hydrology and long-term geomorphology, we derive a theoretical framework for long-term fluvial erosion rates driven by realistic climate by integrating an established stochastic-mechanistic model of hydrology into a threshold-stochastic formulation of stream power. The hydrological theory provides equations for the daily streamflow probability distribution as a function of climatic boundary conditions. The new parameters introduced are rooted firmly in established climatic and hydrological theory. This allows us to account for how fluvial erosion rates respond to changes in rainfall intensity, frequency, evapotranspiration rates, and soil moisture dynamics in a way that is consistent with existing theories. We use this framework to demonstrate how hydroclimatic conditions and erosion threshold magnitude control the degree of nonlinearity between steepness index and erosion rate. We find that hydrological processes can have a significant influence on how erosive a particular climatic forcing will be. By accounting for the influence of hydrology on fluvial erosion, we conclude that climate is an important control on erosion rates and long-term landscape evolution.}, language = {en} } @article{ZhuangJohnstoneHouriganetal.2018, author = {Zhuang, Guangsheng and Johnstone, Samuel A. and Hourigan, Jeremy and Ritts, Bradley and Robinson, Alexander and Sobel, Edward}, title = {Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {58}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2018.02.014}, pages = {195 -- 210}, year = {2018}, abstract = {The early onset of deformation following the India-Asia collision, Neogene expanse of uplift, and complex systems that comprise strike-slip faults, thrust faults, and intermontane basins characterize the Cenozoic tectonism of Northern Tibetan Plateau and raise two prominent questions in orogenic geodynamics: 1) What mechanism(s) control(s) the transfer of stress related to the India-Asia collision across the distance of >2000 km; and 2) Why the development of high topography was delayed in the Northern Tibetan Plateau and what does it reveal about how the internal forces and external boundary conditions evolved. To address these two questions, we reconstruct a holistic spatial-temporal deformation history of the Northern Tibetan Plateau by using a range of thermochronometers, with closure temperature spanning from 350 degrees C to-60-70 degrees C. This multi-thermochronometer study reveals three stages of faulting related cooling, in the early Cretaceous, in Paleocene-Eocene and in middle-late Miocene. We observe that Paleocene-Eocene deformation was spatially restricted and mostly occurred on reactivated Cretaceous structures, indicating a control of pre-existing weakness on early Cenozoic deformation. Extensive Neogene deformation contrasts with restricted Paleocene-Eocene deformation and relatively quiescent shortening during the Oligocene-early Miocene, which implies a change in the regional tectonics regime. Global plate reconstructions show that this tectonic reorganization is coeval with an increase in Pacific-Asia plate convergence rates. We argue that this change in regional tectonics is a result of increasing constrictive environment of the eastern plate boundary, which changed the behavior of the Altyn Tagh fault the boundary fault of Northern Tibetan Plateau, causing it to change from feeding slip into structures out of the plateau to feeding slip into structures at plateau margins.}, language = {en} } @article{KtenidouRoumeliotiAbrahamsonetal.2018, author = {Ktenidou, Olga-Joan and Roumelioti, Zafeiria and Abrahamson, Norman and Cotton, Fabrice and Pitilakis, Kyriazis and Hollender, Fabrice}, title = {Understanding single-station ground motion variability and uncertainty (sigma)}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-017-0098-6}, pages = {2311 -- 2336}, year = {2018}, abstract = {Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30-50\%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φ S2S (20-30\%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset's advantages is the large number of recordings per station (9-90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φ SS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φ SS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φ SS , provided that: (1) the magnitude scaling errors are accommodated by the event terms; (2) there are no distance scaling errors (use of a regionally applicable model). Site terms (φ S2S ) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e., for hard rock.}, language = {en} } @article{BaroniScheiffeleSchroenetal.2018, author = {Baroni, Gabriele and Scheiffele, Lena and Schr{\"o}n, Martin and Ingwersen, Joachim and Oswald, Sascha}, title = {Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing}, series = {Journal of hydrology}, volume = {564}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2018.07.053}, pages = {873 -- 887}, year = {2018}, abstract = {Cosmic-ray neutron sensing (CRNS) is a promising proximal soil sensing technique to estimate soil moisture at intermediate scale and high temporal resolution. However, the signal shows complex and non-unique response to all hydrogen pools near the land surface, providing some challenges for soil moisture estimation in practical applications. Aims of the study were 1) to assess the uncertainty of CRNS as a stand-alone approach to estimate volumetric soil moisture in cropped field 2) to identify the causes of this uncertainty 3) and possible improvements. Two experimental sites in Germany were equipped with a CRNS probe and point-scale soil moisture network. Additional monitoring activities were conducted during the crop growing season to characterize the soil-plant systems. This data is used to identify and quantify the different sources of uncertainty (factors). An uncertainty analysis, based on Monte Carlo approach, is applied to propagate these uncertainties to CRNS soil moisture estimations. In addition, a sensitivity analysis based on the Sobol' method is performed to identify the most important factors explaining this uncertainty. Results show that CRNS soil moisture compares well to the soil moisture network when these point-scale values are weighted to account for the spatial sensitivity of the signal and other sources of hydrogen (lattice water and organic carbon) are added to the water content. However, the performance decreases when CRNS is considered as a stand-alone method to retrieve the actual (non-weighted) volumetric soil moisture. The support volume (penetration depth and radius) shows also a considerable uncertainty, especially in relatively dry soil moisture conditions. Four of the seven factors analyzed (the vertical soil moisture profile, bulk density, incoming neutron correction and the calibrated parameter N0) were found to play an important role. Among the possible improvements identified, a simple correction factor based on vertical point-scale soil moisture profiles shows to be a promising approach to account for the sensitivity of the CRNS signal to the upper soil layers.}, language = {en} } @article{vonSpechtHeidbachCottonetal.2018, author = {von Specht, Sebastian and Heidbach, Oliver and Cotton, Fabrice and Zang, Arno}, title = {Uncertainty reduction of stress tensor inversion with data-driven catalogue selection}, series = {Geophysical journal international}, volume = {214}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy240}, pages = {2250 -- 2263}, year = {2018}, abstract = {The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is commonly done on a spatial basis, that is, hypocentres. However, this selection approach may include data that are undesired, for example, by mixing events that are caused by different stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase of FM data in the past decades, objective data-driven data selection is feasible, allowing more refined FM catalogues that avoid these issues and provide data weights for the STI routines. We present the application of angular classification with expectation-maximization (ACE) as a tool for data selection. ACE identifies clusters of FM without a priori information. The identified clusters can be used for the classification of the style-of-faulting and as weights of the FM data. We demonstrate that ACE effectively selects data that can be associated with a single stress tensor. Two application examples are given for weighted STI from South America. We use the resulting clusters and weights as a priori information for an STI for these regions and show that uncertainties of the stress tensor estimates are reduced significantly.}, language = {en} } @article{FienerWilkenAldanaJagueetal.2018, author = {Fiener, P. and Wilken, F. and Aldana-Jague, E. and Deumlich, D. and Gomez, J. A. and Guzman, G. and Hardy, R. A. and Quinton, J. N. and Sommer, M. and Van Oost, K. and Wexler, R.}, title = {Uncertainties in assessing tillage erosion}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {304}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2017.12.031}, pages = {214 -- 225}, year = {2018}, abstract = {Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8\%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 x 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 039 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = -26 +/- 12\%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost optimal conditions, are subject to major uncertainties that are far from negligible. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Große, Guido and McGuire, David}, title = {Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1035}, issn = {1866-8372}, doi = {10.25932/publishup-45987}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459875}, pages = {12}, year = {2018}, abstract = {Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.}, language = {en} } @article{TapeJonesArpetal.2018, author = {Tape, Ken D. and Jones, Benjamin M. and Arp, Christopher D. and Nitze, Ingmar and Grosse, Guido}, title = {Tundra be dammed}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14332}, pages = {4478 -- 4488}, year = {2018}, abstract = {Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.}, language = {en} } @article{WardWenzSteckeletal.2018, author = {Ward, Hauke and Wenz, Leonie and Steckel, Jan Christoph and Minx, Jan Christoph}, title = {Truncation error estimates in process life cycle assessment using input-output analysis}, series = {Journal of Industrial Ecology}, volume = {22}, journal = {Journal of Industrial Ecology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1088-1980}, doi = {10.1111/jiec.12655}, pages = {1080 -- 1091}, year = {2018}, abstract = {Process life cycle assessment (PLCA) is widely used to quantify environmental flows associated with the manufacturing of products and other processes. As PLCA always depends on defining a system boundary, its application involves truncation errors. Different methods of estimating truncation errors are proposed in the literature; most of these are based on artificially constructed system complete counterfactuals. In this article, we review the literature on truncation errors and their estimates and systematically explore factors that influence truncation error estimates. We classify estimation approaches, together with underlying factors influencing estimation results according to where in the estimation procedure they occur. By contrasting different PLCA truncation/error modeling frameworks using the same underlying input-output (I-O) data set and varying cut-off criteria, we show that modeling choices can significantly influence estimates for PLCA truncation errors. In addition, we find that differences in I-O and process inventory databases, such as missing service sector activities, can significantly affect estimates of PLCA truncation errors. Our results expose the challenges related to explicit statements on the magnitude of PLCA truncation errors. They also indicate that increasing the strictness of cut-off criteria in PLCA has only limited influence on the resulting truncation errors. We conclude that applying an additional I-O life cycle assessment or a path exchange hybrid life cycle assessment to identify where significant contributions are located in upstream layers could significantly reduce PLCA truncation errors.}, language = {en} } @article{LeonCardonaParraetal.2018, author = {Leon, Santiago and Cardona, Agustin and Parra, Mauricio and Sobel, Edward and Jaramillo, Juan S. and Glodny, Johannes and Valencia, Victor A. and Chew, David and Montes, Camilo and Posada, Gustavo and Monsalve, Gaspar and Pardo-Trujillo, Andres}, title = {Transition from collisional to subduction-related regimes}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004785}, pages = {119 -- 139}, year = {2018}, abstract = {A geological transect across the suture separating northwestern South America from the Panama Arc helps document the provenance and thermal history of both crustal domains and the suture zone. During middle Miocene, strata were being accumulated over the suture zone between the Panama Arc and the continental margin. Integrated provenance analyses of those middle Miocene strata show the presence of mixed sources that includes material derived from the two major crustal domains: the old northwestern South American orogens and the younger Panama Arc. Coeval moderately rapid exhumation of Upper Cretaceous to Paleogene sediments forming the reference continental margin is suggested from our inverse thermal modeling. Strata within the suture zone are intruded by similar to 12 Ma magmatic arc-related plutons, marking the transition from a collisional orogen to a subduction-related one. Renewed late Miocene to Pliocene acceleration of the exhumation rates is the consequence of a second tectonic pulse, which is likely to be triggered by the onset of a flat-slab subduction of the Nazca plate underneath the northernmost Andes of Colombia, suggesting that late Miocene to Pliocene orogeny in the Northern Andes is controlled by at least two different tectonic mechanisms.}, language = {en} } @article{CreightonParsekianAngelopoulosetal.2018, author = {Creighton, Andrea L. and Parsekian, Andrew D. and Angelopoulos, Michael and Jones, Benjamin M. and Bondurant, A. and Engram, M. and Lenz, Josefine and Overduin, Pier Paul and Grosse, Guido and Babcock, E. and Arp, Christopher D.}, title = {Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB016121}, pages = {9310 -- 9323}, year = {2018}, abstract = {Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions.}, language = {en} } @article{AwaisAhmadKhanetal.2018, author = {Awais, Muhammad and Ahmad, Rafiq and Khan, Nadeem and Garapati, Prashanth and Shahzad, Muhammad and Afroz, Amber and Rashid, Umer and Khan, Sabaz Ali}, title = {Transformation of tomato variety rio grande with drought resistant transcription factor gene ATAF1 and its molecular analysis}, series = {Pakistan Journal of Botany}, volume = {50}, journal = {Pakistan Journal of Botany}, number = {5}, publisher = {Pakistan botanic soc}, address = {Karachi}, issn = {0556-3321}, pages = {1811 -- 1820}, year = {2018}, abstract = {Tomato (Solanum lycopersicum L.) being an important vegetable is cultivated and used throughout the world. It not only contributes in fulfilling the basic nutritional requirements of the human body but also has many health benefits due to its rich biochemical composition. However, its production at large scale is hampered by many limiting factors such as biotic and abiotic stresses. Among the different abiotic stresses, drought poses drastic impact on tomato yield. Drought stress is genetically regulated by many transcription factors that not only regulate the stress responsive mechanism but also facilitate the growth and development of tomato plants. NAC is an important stress related transcription factor genes family, and the ATAF1 gene, a member of this family, is involved in ABA signaling and stress response. In this study, tomato variety Rio Drande was transformed with drought resistant ATAF1 gene via Agrobacterium mediated gene transformation method. The ATAF1 gene was first cloned in the pK7WFG2 vector having kanamycin selectable marker and then it was introduced in the Agrobacterium tumefaciens strain GV3101 through heat shock method. The tomato cotyledon and hypocotyl ex-plants of variety "Rio Ggrande" were cultured on callus induction medium (MS + 2.5 mg/L IAA + 2 mg/L BAP). The calli were then infected with Agrobacterium tumefaciens strain GV3101 containing ATAF1 gene and selection was carried out on the kanamycin selectable medium (MS + 100 mg/L Kan), and were regenerated on MS medium with 1 mg/L IAA + 1 mg/L BAP. Out of 216 putative transformed calli, 13 calli were able to regenerate on the selection medium. Of the 13 calli, three transgenic tomato plantlets were recovered, and these were confirmed through PCR analysis for the presence of 432 bp fragment of ATAF1 gene. The transformation protocol reported here can be used to generate drought resistant tomato plants in future.}, language = {en} } @article{TrietDungMerzetal.2018, author = {Triet, Nguyen Van Khanh and Dung, Nguyen Viet and Merz, Bruno and Apel, Heiko}, title = {Towards risk-based flood management in highly productive paddy rice cultivation}, series = {Natural hazards and earth system sciences}, volume = {18}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-18-2859-2018}, pages = {2859 -- 2876}, year = {2018}, abstract = {Flooding is an imminent natural hazard threatening most river deltas, e.g. the Mekong Delta. An appropriate flood management is thus required for a sustainable development of the often densely populated regions. Recently, the traditional event-based hazard control shifted towards a risk management approach in many regions, driven by intensive research leading to new legal regulation on flood management. However, a large-scale flood risk assessment does not exist for the Mekong Delta. Particularly, flood risk to paddy rice cultivation, the most important economic activity in the delta, has not been performed yet. Therefore, the present study was developed to provide the very first insight into delta-scale flood damages and risks to rice cultivation. The flood hazard was quantified by probabilistic flood hazard maps of the whole delta using a bivariate extreme value statistics, synthetic flood hydrographs, and a large-scale hydraulic model. The flood risk to paddy rice was then quantified considering cropping calendars, rice phenology, and harvest times based on a time series of enhanced vegetation index (EVI) derived from MODIS satellite data, and a published rice flood damage function. The proposed concept provided flood risk maps to paddy rice for the Mekong Delta in terms of expected annual damage. The presented concept can be used as a blueprint for regions facing similar problems due to its generic approach. Furthermore, the changes in flood risk to paddy rice caused by changes in land use currently under discussion in the Mekong Delta were estimated. Two land-use scenarios either intensifying or reducing rice cropping were considered, and the changes in risk were presented in spatially explicit flood risk maps. The basic risk maps could serve as guidance for the authorities to develop spatially explicit flood management and mitigation plans for the delta. The land-use change risk maps could further be used for adaptive risk management plans and as a basis for a cost-benefit of the discussed land-use change scenarios. Additionally, the damage and risks maps may support the recently initiated agricultural insurance programme in Vietnam.}, language = {en} } @article{FoersterDeocampoAsratetal.2018, author = {Foerster, Verena and Deocampo, Daniel M. and Asrat, Asfawossen and G{\"u}nter, Christina and Junginger, Annett and Kr{\"a}mer, Kai Hauke and Stroncik, Nicole A. and Trauth, Martin H.}, title = {Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {501}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.04.009}, pages = {111 -- 123}, year = {2018}, abstract = {Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation.}, language = {en} } @article{KloseGuillemoteauSimonetal.2018, author = {Klose, Tim and Guillemoteau, Julien and Simon, Francois-Xavier and Tronicke, Jens}, title = {Toward subsurface magnetic permeability imaging with electromagnetic induction sensors}, series = {Geophysics}, volume = {83}, journal = {Geophysics}, number = {5}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2017-0827.1}, pages = {E335 -- E345}, year = {2018}, abstract = {In near-surface geophysics, small portable loop-loop electro-magnetic induction (EMI) sensors using harmonic sources with a constant and rather small frequency are increasingly used to investigate the electrical properties of the subsurface. For such sensors, the influence of electrical conductivity and magnetic permeability on the EMI response is well-understood. Typically, data analysis focuses on reconstructing an electrical conductivity model by inverting the out-of-phase response. However, in a variety of near-surface applications, magnetic permeability (or susceptibility) models derived from the in-phase (IP) response may provide important additional information. In view of developing a fast 3D inversion procedure of the IP response for a dense grid of measurement points, we first analyze the 3D sensitivity functions associated with a homogeneous permeable half-space. Then, we compare synthetic data computed using a linear forward-modeling method based on these sensitivity functions with synthetic data computed using full nonlinear forward-modeling methods. The results indicate the correctness and applicability of our linear forward-modeling approach. Furthermore, we determine the advantages of converting IP data into apparent permeability, which, for example, allows us to extend the applicability of the linear forward-modeling method to high-magnetic environments. Finally, we compute synthetic data with the linear theory for a model consisting of a controlled magnetic target and compare the results with field data collected with a four-configuration loop-loop EMI sensor. With this field-scale experiment, we determine that our linear forward-modeling approach can reproduce measured data with sufficiently small error, and, thus, it represents the basis for developing efficient inversion approaches.}, language = {en} } @article{MurrayBraunReiners2018, author = {Murray, Kendra E. and Braun, Jean and Reiners, Peter W.}, title = {Toward Robust Interpretation of Low-Temperature Thermochronometers in Magmatic Terranes}, series = {Geochemistry, geophysics, geosystems}, volume = {19}, journal = {Geochemistry, geophysics, geosystems}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2018GC007595}, pages = {3739 -- 3763}, year = {2018}, abstract = {Many regions central to our understanding of tectonics and landscape evolution are active or ancient magmatic terranes, and robust interpretation of low-temperature thermochronologic ages in these settings requires careful attention to the drivers of rock heating and cooling, including magmatism. However, we currently lack a quantitative framework for evaluating the potential role of magmatic coolingthat is, post-magmatic thermal relaxationin shaping cooling age patterns in regions with a history of intrusive magmatism. Here we use analytical approximations and numerical models to characterize how low-temperature thermochronometers document cooling inside and around plutons in steadily exhuming environments. Our models predict that the thermal field a pluton intrudes into, specifically the ambient temperatures relative to the closure temperature of a given thermochronometer, is as important as the pluton size and temperature in controlling the pattern and extent of thermochronometer resetting in the country rocks around a pluton. We identify one advective and several conductive timescales that govern the relationship between the crystallization and cooling ages inside a pluton. In synthetic vertical age-elevation relationships (AERs), resetting next to plutons results in changes in AER slope that could be misinterpreted as past changes in exhumation rate if the history of magmatism is not accounted for. Finally, we find that large midcrustal plutons, such as those emplaced at similar to 10-15-km depth, can reset the low-temperature thermochronometers far above them in the upper crusta result with considerable consequences for thermochronology in arcs and regions with a history of magmatic activity that may not have a surface expression.}, language = {en} } @article{SchwanghartRyanKorup2018, author = {Schwanghart, Wolfgang and Ryan, Marie and Korup, Oliver}, title = {Topographic and seismic constraints on the vulnerability of himalayan hydropower}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {17}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL079173}, pages = {8985 -- 8992}, year = {2018}, abstract = {Plain Language Summary The 2015 Gorkha earthquake in Nepal caused severe losses in the hydropower sector. The country temporarily lost similar to 20\% of its hydropower capacity, and >30 hydropower projects were damaged. The projects hit hardest were those that were affected by earthquake-triggered landslides. We show that these projects are located along very steep rivers with towering sidewalls that are prone to become unstable during strong seismic ground shaking. A statistical classification based on a topographic metric that expresses river steepness and earthquake ground acceleration is able to approximately predict hydropower damage during future earthquakes, based on successful testing of past cases. Thus, our model enables us to estimate earthquake damages to hydropower projects in other parts of the Himalayas. We find that >10\% of the Himalayan drainage network may be unsuitable for hydropower infrastructure given high probabilities of high earthquake damages.}, language = {en} } @article{BiswasHermanKingetal.2018, author = {Biswas, R. H. and Herman, F. and King, G. E. and Braun, Jean}, title = {Thermoluminescence of feldspar as a multi-thermochronometer to constrain the temporal variation of rock exhumation in the recent past}, series = {Earth \& planetary science letters}, volume = {495}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.04.030}, pages = {56 -- 68}, year = {2018}, abstract = {Natural thermoluminescence (TL) in rocks reflects a dynamic equilibrium between radiation-induced TL growth and decay via thermal and athermal pathways. When rocks exhume through Earth's crust and cool from high to low temperature, this equilibrium level increases as the temperature dependent thermal decay decreases. This phenomenon can be exploited to extract thermal histories of rocks. The main advantage of TL is that a single TL glow curve has a wide range of thermal stabilities (lifetime 100 °C/Ma, whereas deeper traps, i.e. with higher activation energies, provide constraints on thermal histories for higher cooling rates (>300 °C/Ma). Finally, we show how the path of rock exhumation (i.e., depth vs. time) can be constrained using an inverse approach. The newly developed methodology is applied to rapidly cooled samples from the Namche Barwa massif, eastern Himalaya to suggest a trend in exhumation rate with time that follows an inverse correlation with global temperature and glaciers equilibrium altitude line (ELA).}, language = {en} } @misc{HeidbachRajabiCuietal.2018, author = {Heidbach, Oliver and Rajabi, Mojtaba and Cui, Xiaofeng and Fuchs, Karl and Mueller, Birgit and Reinecker, John and Reiter, Karsten and Tingay, Mark and Wenzel, Friedemann and Xie, Furen and Ziegler, Moritz O. and Zoback, Mary-Lou and Zoback, Mark}, title = {The World Stress Map database release 2016}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {744}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2018.07.007}, pages = {484 -- 498}, year = {2018}, abstract = {Knowledge of the present-day crustal in-situ stress field is a key for the understanding of geodynamic processes such as global plate tectonics and earthquakes. It is also essential for the management of geo-reservoirs and underground storage sites for energy and waste. Since 1986, the World Stress Map (WSM) project has systematically compiled the orientation of maximum horizontal stress (S-Hmax). For the 30th anniversary of the project, the WSM database has been updated significantly with 42,870 data records which is double the amount of data in comparison to the database release in 2008. The update focuses on areas with previously sparse data coverage to resolve the stress pattern on different spatial scales. In this paper, we present details of the new WSM database release 2016 and an analysis of global and regional stress pattern. With the higher data density, we can now resolve stress pattern heterogeneities from plate-wide to local scales. In particular, we show two examples of 40 degrees-60 degrees S-Hmax rotations within 70 km. These rotations can be used as proxies to better understand the relative importance of plate boundary forces that control the long wave-length pattern in comparison to regional and local controls of the crustal stress state. In the new WSM project phase IV that started in 2017, we will continue to further refine the information on the S-Hmax orientation and the stress regime. However, we will also focus on the compilation of stress magnitude data as this information is essential for the calibration of geomechanical-numerical models. This enables us to derive a 3-D continuous description of the stress tensor from point-wise and incomplete stress tensor information provided with the WSM database. Such forward models are required for safety aspects of anthropogenic activities in the underground and for a better understanding of tectonic processes such as the earthquake cycle.}, language = {en} } @article{HeVorogushynUngerShayestehetal.2018, author = {He, Zhihua and Vorogushyn, Sergiy and Unger-Shayesteh, Katy and Gafurov, Abror and Kalashnikova, Olga and Omorova, Elvira and Merz, Bruno}, title = {The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins}, series = {Water resources research}, volume = {54}, journal = {Water resources research}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2017WR021966}, pages = {2336 -- 2361}, year = {2018}, abstract = {This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.}, language = {en} } @article{SchildgenHoke2018, author = {Schildgen, Taylor F. and Hoke, Gregory D.}, title = {The topographic evolution of the central andes}, series = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, volume = {14}, journal = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {1811-5209}, doi = {10.2138/gselements.14.4.231}, pages = {231 -- 236}, year = {2018}, abstract = {Changes in topography on Earth, particularly the growth of major mountain belts like the Central Andes, have a fundamental impact on regional and global atmospheric circulation patterns. These patterns, in turn, affect processes such as precipitation, erosion, and sedimentation. Over the last two decades, various geochemical, geomorphologic, and geologic approaches have helped identify when, where, and how quickly topography has risen in the past. The current spatio-temporal picture of Central Andean growth is now providing insight into which deep-Earth processes have left their imprint on the shape of the Earth's surface.}, language = {en} } @article{RizzoLauritaAltenberger2018, author = {Rizzo, Giovanna and Laurita, Salvatore and Altenberger, Uwe}, title = {The Timpa delle Murge ophiolitic gabbros, southern Apennines}, series = {Periodico di Mineralogia}, volume = {87}, journal = {Periodico di Mineralogia}, number = {1}, publisher = {Edizioni nuova cultura}, address = {Roma}, issn = {0369-8963}, doi = {10.2451/2018PM741}, pages = {5 -- 20}, year = {2018}, abstract = {The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assemblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a "normal" mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc.}, language = {en} } @misc{RizzoLauritaAltenberger2018, author = {Rizzo, Giovanna and Laurita, Salvatore and Altenberger, Uwe}, title = {The Timpa delle Murge ophiolitic gabbros, southern Apennines}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1002}, issn = {1866-8372}, doi = {10.25932/publishup-45992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459928}, pages = {5 -- 20}, year = {2018}, abstract = {The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assemblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a "normal" mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc.}, language = {en} } @article{GovinNajmanDupontNivetetal.2018, author = {Govin, Gwladys and Najman, Yani and Dupont-Nivet, Guillaume and Millar, Ian and van der Beek, Pieter A. and Huyghe, Pascale and Mark, Chris and Vogeli, Natalie}, title = {The tectonics and paleo-drainage of the easternmost Himalaya (Arunachal Pradesh, India) recorded in the Siwalik rocks of the foreland basin}, series = {American Journal of Science}, volume = {318}, journal = {American Journal of Science}, number = {7}, publisher = {Kline Geology Laboratory, Yale University}, address = {New Haven}, issn = {0002-9599}, doi = {10.2475/07.2018.02}, pages = {764 -- 798}, year = {2018}, abstract = {The Siwalik sedimentary rocks of the Himalayan foreland basin preserve a record of Himalayan orogenesis, paleo-drainage evolution, and erosion. This study focuses on the still poorly studied easternmost Himalaya Siwalik record located directly downstream of the Namche Barwa syntaxis. We use luminescence, palaeomagnetism, magnetostratigraphy, and apatite fission-track dating to constrain the depositional ages of three Siwalik sequences: the Sibo outcrop (Upper Siwalik sediments at ca. 200-800 ka), the Remi section (Middle and Upper Siwalik rocks at >0.8-<8.8 +/- 2.4 Ma), and the Siang section (Middle Siwalik rocks at <9.3 +/- 1.5 to <13.5 +/- 1.5 Ma). Cretaceous-Paleogene detrital zircon and apatite U-Pb ages, characteristic of the Transhimalayan Gangdese Batholiths that crop out northwest of the syntaxis, are present throughout the Sibo, Remi, and Siang successions, confirming the existence of a Yarlung-Brahmaputra connection since at least the Late Miocene. A ca. 500 Ma zircon population increases up section, most strikingly sometime between 3.6 to 6.6 Ma, at the expense of Transhimalayan grains. We consider the ca. 500 Ma population to be derived from the Tethyan or Greater Himalaya, and we interpret the up-section increase to reflect progressive exhumation of the Namche Barwa syntaxis. Early Cretaceous zircon and apatite U-Pb ages are rare in the Sibo, Remi, and Siang successions, but abundant in modern Siang River sediments. Zircons of this age range are characteristic of the Transhimalayan Bomi-Chayu batholiths, which crop out east of the syntaxis and are eroded by the Parlung River, a modern tributary of the Siang River. We interpret the difference in relative abundance of Early Cretaceous zircons between the modern and ancient sediments to reflect capture of the Parlung by the Siang after 800 ka.}, language = {en} } @article{AtsawawaranuntComasBruMozhdehietal.2018, author = {Atsawawaranunt, Kamolphat and Comas-Bru, Laia and Mozhdehi, Sahar Amirnezhad and Deininger, Michael and Harrison, Sandy P. and Baker, Andy and Boyd, Meighan and Kaushal, Nikita and Ahmad, Syed Masood and Brahim, Yassine Ait and Arienzo, Monica and Bajo, Petra and Braun, Kerstin and Burstyn, Yuval and Chawchai, Sakonvan and Duan, Wuhui and Hatvani, Istvan Gabor and Hu, Jun and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew and Lechleitner, Franziska A. and Lorrey, Andrew and Perez-Mejias, Carlos and Pickering, Robyn and Scroxton, Nick and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miriam and Pablo Bernal, Juan and Breitenbach, Sebastian Franz Martin and Boch, Ronny and Borsato, Andrea and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Columbu, Andrea and Couchoud, Isabelle and Cruz, Francisco and Demeny, Attila and Dominguez-Villar, David and Dragusin, Virgil and Drysdale, Russell and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Luetscher, Marc and Li, Ting-Yong and Lone, Mahjoor Ahmad and Markowska, Monika and Mattey, Dave and McDermott, Frank and Moreno, Ana and Moseley, Gina and Nehme, Carole and Novello, Valdir F. and Psomiadis, David and Rehfeld, Kira and Ruan, Jiaoyang and Sekhon, Natasha and Sha, Lijuan and Sholz, Denis and Shopov, Yavor and Smith, Andrew and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Veiga-Pires, Cristina and Voarintsoa, Ny Riavo and Wang, Xianfeng and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zong, Baoyun}, title = {The SISAL database}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp Members}, issn = {1866-3508}, doi = {10.5194/essd-10-1687-2018}, pages = {1687 -- 1713}, year = {2018}, abstract = {Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data.}, language = {en} } @article{PestryakovaHerzschuhGorodnichevetal.2018, author = {Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike and Gorodnichev, Ruslan and Wetterich, Sebastian}, title = {The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables}, series = {Polar research : a Norwegian journal of Polar research}, volume = {37}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0800-0395}, doi = {10.1080/17518369.2018.1485625}, pages = {16}, year = {2018}, abstract = {Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions.}, language = {en} } @article{SorkauBochBoeddinghausetal.2018, author = {Sorkau, Elisabeth and Boch, Steffen and Boeddinghaus, Runa S. and Bonkowski, Michael and Fischer, Markus and Kandeler, Ellen and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schoening, Ingo and Schrumpf, Marion and Weinert, Jan and Oelmann, Yvonne}, title = {The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {181}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201700082}, pages = {185 -- 197}, year = {2018}, abstract = {Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.}, language = {en} } @article{HermanBraunDealetal.2018, author = {Herman, Frederic and Braun, Jean and Deal, Eric and Prasicek, Gunther}, title = {The response time of glacial erosion}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004586}, pages = {801 -- 817}, year = {2018}, abstract = {There has been recent progress in the understanding of the evolution of Quaternary climate. Simultaneously, there have been improvements in the understanding of glacial erosion processes, with better parameter constraints. Despite this, there remains much debate about whether or not the observed cooling over the Quaternary has driven an increase in glacial erosion rates. Most studies agree that the erosional response to climate change must be transient; therefore, the time scale of the climatic change and the response time of glacial erosion must be accounted for. Here we analyze the equations governing glacial erosion in a steadily uplifting landscape with variable climatic forcing and derive expressions for two fundamental response time scales. The first time scale describes the response of the glacier and the second one the glacial erosion response. We find that glaciers have characteristic time scales of the order of 10 to 10,000 years, while the characteristic time scale for glacial erosion is of the order of a few tens of thousands to a few million years. We then use a numerical model to validate the approximations made to derive the analytical solutions. The solutions show that short period forcing is dampened by the glacier response time, and long period forcing (>1 Myr) may be dampened by erosional response of glaciers when the rock uplift rates are high. In most tectonic and climatic conditions, we expect to see the strongest response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene climatic cycles. Finally, we use the numerical model to predict the response of glacial systems to the observed climatic forcing of the Quaternary, including, but not limited to, the Milankovich periods and the long-term secular cooling trend. We conclude that an increase of glacial erosion in response to Quaternary cooling is physically plausible, and we show that the magnitude of the increase depends on rock uplift and ice accumulation rates.}, language = {en} } @article{GruenthalStromeyerBosseetal.2018, author = {Gr{\"u}nthal, Gottfried and Stromeyer, Dietrich and Bosse, Christian and Cotton, Fabrice and Bindi, Dino}, title = {The probabilistic seismic hazard assessment of Germany-version 2016, considering the range of epistemic uncertainties and aleatory variability}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0315-y}, pages = {4339 -- 4395}, year = {2018}, abstract = {The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of nu(S30) = 800 m/s, are calculated for three hazard levels (10, 5 and 2\% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02-3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.}, language = {en} } @article{BindiKothaWeatherilletal.2018, author = {Bindi, Dino and Kotha, Sreeram Reddy and Weatherill, Graeme and Lanzano, Giovanni and Luzi, Lucia and Cotton, Fabrice}, title = {The pan-European engineering strong motion (ESM) flatfile}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {17}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0466-x}, pages = {583 -- 602}, year = {2018}, abstract = {We present the results of a consistency check performed over the flatfile extracted from the engineering strong motion (ESM) database. The flatfile includes 23,014 recordings from 2179 earthquakes in the magnitude range from 3.5 to 7.8 that occurred since the 1970s in Europe and Middle East, as presented in the companion article by Lanzano et al. (Bull Earthq Eng, 2018a). The consistency check is developed by analyzing different residual distributions obtained from ad-hoc ground motion prediction equations for the absolute spectral acceleration (SA), displacement and Fourier amplitude spectra (FAS). Only recordings from earthquakes shallower than 40 km are considered in the analysis. The between-event, between-station and event-and-station corrected residuals are computed by applying a mixed-effect regression. We identified those earthquakes, stations, and recordings showing the largest deviations from the GMPE median predictions, and also evaluated the statistical uncertainty on the median model to get insights on the applicable magnitude-distance ranges and the usable period (or frequency) range. We observed that robust median predictions are obtained up to 8 s for SA and up to 20 Hz for FAS, although median predictions for Mw ≥ 7 show significantly larger uncertainties with 'bumps' starting above 5 s for SA and below 0.3 Hz for FAS. The between-station variance dominates over the other residual variances, and the dependence of the between-station residuals on logarithm of Vs30 is well-described by a piece-wise linear function with period-dependent slopes and hinge velocity around 580 m/s. Finally, we compared the between-event residuals obtained by considering two different sources of moment magnitude. The results show that, at long periods, the between-event terms from the two regressions have a weak correlation and the overall between-event variability is dissimilar, highlighting the importance of magnitude source in the regression results.}, language = {en} } @article{GrigoliCescaRinaldietal.2018, author = {Grigoli, Francesco and Cesca, Simone and Rinaldi, Antonio Pio and Manconi, Andrea and Lopez-Comino, Jos{\´e} {\´A}ngel and Clinton, John F. and Westaway, Rob and Cauzzi, Carlo and Dahm, Torsten and Wiemer, Stefan}, title = {The November 2017 M-w 5.5 Pohang earthquake}, series = {Science}, volume = {360}, journal = {Science}, number = {6392}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat2010}, pages = {1003 -- 1006}, year = {2018}, abstract = {The moment magnitude (M-w) 5.5 earthquake that struck South Korea in November 2017 was one of the largest and most damaging events in that country over the past century. Its proximity to an enhanced geothermal system site, where high-pressure hydraulic injection had been performed during the previous 2 years, raises the possibility that this earthquake was anthropogenic. We have combined seismological and geodetic analyses to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence, and shed light on its causal factors. According to our analysis, it seems plausible that the occurrence of this earthquake was influenced by the aforementioned industrial activities. Finally, we found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.}, language = {en} } @article{WinterleitnerSchuetzWenzlaffetal.2018, author = {Winterleitner, Gerd and Sch{\"u}tz, F. and Wenzlaff, Christian and Huenges, Ernst}, title = {The impact of reservoir heterogeneities on High-Temperature aquifer thermal energy storage systems}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {74}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Oxford}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2018.02.005}, pages = {150 -- 162}, year = {2018}, abstract = {We conducted a geoscientific feasibility study for the development of a high-temperature thermal aquifer energy storage system (HT-ATES) outside the capital of Muscat, northern Oman. The aquifer storage is part of a solar geothermal cooling project for the sustainable and continuous cooling of office buildings. The main concept is that excess solar energy will be stored in the subsurface through hot water injection and subsequently utilised as auxiliary energy source during peak demand times. The characterisation of aquifer heterogeneities is thus essential to predict subsurface thermal heat plume development and recovery efficiency of the storage system. We considered two aquifer systems as potential storage horizons, (i) a clastic-dominated alluvial fan system where individual channel systems in combination with diagenetic alterations constitute the main heterogeneities and (ii) a carbonate-dominated system represented by a homogenous layer-cake architecture. The feasibility study included a multidisciplinary approach from initial field work, geocellular reservoir modelling to finite element fluid flow and thermal modelling. Our results show that for the HT-ATES system, with a high frequency of injection and production cycles, heat loss mainly occurs due to heterogeneities in the permeability field of the aquifer in combination with buoyancy driven vertical fluid flow. An impermeable cap-rock is needed to keep the heat plume in place. Conductive heat loss is a minor issue. Highly complex heat plume geometries are apparent in the clastic channel system and ATES well planning is challenging due to the complex and interconnected high permeable channels. The carbonate sequence shows uniform plume geometries due to the layer cake architecture of the system and is tentatively more suitable for ATES development. Based on our findings we propose the general concept of HT-ATES traps, incorporating and building on expertise and knowledge from petroleum and reservoir geology regarding reservoir rocks and suitable trap\&seal geometries. The concept can be used as guideline for future high-temperature aquifer storage exploration and development.}, language = {en} } @article{QuandtTrumbullAltenbergeretal.2018, author = {Quandt, Dennis and Trumbull, Robert B. and Altenberger, Uwe and Cardona, Agustin and Romer, Rolf L. and Bayona, Germ{\´a}n A. and Ducea, Mihai N. and Valencia, Victor and Vasquez, Monica and Cortes, Elizabeth and Guzman, Georgina}, title = {The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications}, series = {Journal of South American earth sciences}, volume = {86}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2018.06.019}, pages = {216 -- 230}, year = {2018}, abstract = {The Sierra Nevada de Santa Marta in NW Colombia is an isolated massif at the northernmost end of the Andes chain near the boundary with the Caribbean plate. Previous geologic mapping and K-Ar dating have shown that Jurassic plutonic and volcanic units make up a large part of the Santa Marta Massif (SMM). These rocks have been considered to be part of a Jurassic magmatic arc extending from NW Colombia to northern Chile, but without any geochemical basis for comparison. This paper reports on a geochemical and Sr-Nd-Pb isotope study of the Jurassic rocks in the SMM and provides 12 new U-Pb zircon ages from in-situ laser ICP-MS dating. The plutonic and volcanic units span a range from 45 to 78 wt.\% SiO2, with a dominance of intermediate to felsic compositions with SiO2 > 57 wt.\%. They classify as calc-alkaline, medium to high-K, metaluminous rocks with trace-element features typical for arc-derived magma series. In terms of their major and trace-element compositions, the SMM Jurassic units overlap with contemporary plutonic and volcanic rocks from other regions of the Central and Eastern Cordilleras of Colombia, and confirm an arc affinity. The new U-Pb ages range from 176 +/- 1 Ma to 192 +/- 2 Ma (n = 12), with most between 180 and 188 Ma (n = 7). The initial Sr isotope ratios (at 180 Ma) are between 0.7012 and 0.7071 (n = 29), with 3 outliers attributed to mobilization of Rb and/or Sr, Nearly all samples have negative( )epsilon Nd-(180) values between - 10.3 and 0.0 (n = 30), the two exceptions being only slightly positive (1.1 and 1.9). Measured Pb isotope ratios fall in a narrow range, with Pb-206/Pb-204 from 18.02 to 19.95, (207) Pb/(204) Pb from 15.56 to 15.67 and Pb-208/Pb-204 from 37.76 to 39.04 (n = 28). In the regional context of previous studies, these results confirm early Jurassic ages and an arc affinity for the widespread magmatism exposed in the eastern and northeastern Colombian Andes. We also note patterns in the distribution and composition of magmas. The magmatic activity in the Central Cordillera tends to be younger than in the Eastern Cordillera and is spatially more restricted to the vicinity of regional fault systems. In terms of composition, Jurassic igneous rocks in the Eastern Cordillera have systematically lower epsilon Nd-(180) values than those from the Central Cordillera, whereas the Pb isotope ratios overlap. We ascribe the Nd isotope variations to heterogeneity in the mantle source and/or degree of crustal contamination, whereas the Pb isotope ratios are crust-dominated and similar throughout the region. The spatio-temporal and compositional evolution of Jurassic magmatic rocks in the Northern Andes reflect the major plate kinematic readjustment between the Triassic and the Early Jurassic in the proto-Andean margin.}, language = {en} } @article{GudipudiRybskiLuedekeetal.2018, author = {Gudipudi, Venkata Ramana and Rybski, Diego and L{\"u}deke, Matthias K. B. and Zhou, Bin and Liu, Zhu and Kropp, J{\"u}rgen}, title = {The efficient, the intensive, and the productive}, series = {Applied Energy}, volume = {236}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2018.11.054}, pages = {155 -- 162}, year = {2018}, abstract = {Urban areas play an unprecedented role in potentially mitigating climate change and supporting sustainable development. In light of the rapid urbanisation in many parts on the globe, it is crucial to understand the relationship between settlement size and CO2 emission efficiency of cities. Recent literature on urban scaling properties of emissions as a function of population size has led to contradictory results and more importantly, lacked an in-depth investigation of the essential factors and causes explaining such scaling properties. Therefore, in analogy to the well-established Kaya Identity, we develop a relation combining the involved exponents. We demonstrate that application of this Urban Kaya Relation will enable a comprehensive understanding about the intrinsic factors determining emission efficiencies in large cities by applying it to a global dataset of 61 cities. Contrary to traditional urban scaling studies which use Ordinary Least Squares (OLS) regression, we show that the Reduced Major Axis (RMA) is necessary when complex relations among scaling exponents are to be investigated. RMA is given by the geometric mean of the two OLS slopes obtained by interchanging the dependent and independent variable. We discuss the potential of the Urban Kaya Relation in mainstreaming local actions for climate change mitigation.}, language = {en} } @article{MeeseBookhagenOlenetal.2018, author = {Meese, Bernd and Bookhagen, Bodo and Olen, Stephanie M. and Barthold, Frauke Katrin and Sachse, Dirk}, title = {The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya}, series = {Hydrological processes}, volume = {32}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13281}, pages = {3662 -- 3674}, year = {2018}, abstract = {Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20\%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records.}, language = {en} } @article{HeringStinnesbeckFolmeisteretal.2018, author = {Hering, Fabio and Stinnesbeck, Wolfgang and Folmeister, Jens and Frey, Eberhard and Stinnesbeck, Sarah and Aviles, Jeronimo and Nunez, Eugenio Aceves and Gonzalez, Arturo and Mata, Alejandro Terrazas and Benavente, Martha Elena and Rojas, Carmen and Morlet, Adriana Velazquez and Frank, Norbert and Zell, Patrick and Becker, Julia}, title = {The Chan Hol cave near Tulum (Quintana Roo, Mexico)}, series = {Journal of quaternary science}, volume = {33}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.3025}, pages = {444 -- 454}, year = {2018}, abstract = {Numerous charcoal accumulations discovered in the submerged Chan Hol cave near Tulum, Quintana Roo, Mexico, have been C-14-dated revealing ages between 8110 +/- 28 C-14 a BP (9122-8999 cal a BP) and 7177 +/- 27 C-14 a BP (8027-7951 cal a BP). These charcoal concentrations, interpreted here as ancient illumination sites, provide strong evidence that the Chan Hol cave was dry and accessible during that time interval. Humans used the cave for at least 1200 years during the early and middle Holocene, before access was successively interrupted by global sea level rise and flooding of the cave system. Our data thus narrow the gap between an early settlement in the Tulum area reaching from the late Pleistocene (similar to 13 000 a) to middle Holocene (e.g. 7177 C-14 a BP), and the Maya Formative period at approximately 3000 a bp. Yet, no evidence has been presented to date for human settlement during the similar to 4000-year interval between 7000 and 3000 a. This is remarkable as settlement in other areas of south-eastern Mexico (e.g. Chiapas, Tabasco) and in Guatemala was apparently continuous.}, language = {en} } @article{WoernerSchildgenReich2018, author = {W{\"o}rner, Gerhard and Schildgen, Taylor F. and Reich, Martin}, title = {The central Andes}, series = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, volume = {14}, journal = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {1811-5209}, doi = {10.2138/gselements.14.4.225}, pages = {225 -- 230}, year = {2018}, abstract = {The Central Andes and the Atacama Desert represent a unique geological, climatic, and magmatic setting on our planet. It is the only place on Earth where subduction of an oceanic plate below an active continental margin has led to an extensive mountain chain and an orogenic plateau that is second in size only to the Tibetan Plateau, which resulted from continental collision. In this article, we introduce the history of the Central Andes and the evolution of its landscape. We also discuss links between tectonic forces, magmatism, and the extreme hyperarid climate of this land that, in turn, has led to rich deposits of precious ores and minerals.}, language = {en} } @misc{HetenyiMolinariClintonetal.2018, author = {Hetenyi, Gyorgy and Molinari, Irene and Clinton, John and Bokelmann, Gotz and Bondar, Istvan and Crawford, Wayne C. and Dessa, Jean-Xavier and Doubre, Cecile and Friederich, Wolfgang and Fuchs, Florian and Giardini, Domenico and Graczer, Zoltan and Handy, Mark R. and Herak, Marijan and Jia, Yan and Kissling, Edi and Kopp, Heidrun and Korn, Michael and Margheriti, Lucia and Meier, Thomas and Mucciarelli, Marco and Paul, Anne and Pesaresi, Damiano and Piromallo, Claudia and Plenefisch, Thomas and Plomerova, Jaroslava and Ritter, Joachim and Rumpker, Georg and Sipka, Vesna and Spallarossa, Daniele and Thomas, Christine and Tilmann, Frederik and Wassermann, Joachim and Weber, Michael and Weber, Zoltan and Wesztergom, Viktor and Zivcic, Mladen and Abreu, Rafael and Allegretti, Ivo and Apoloner, Maria-Theresia and Aubert, Coralie and Besancon, Simon and de Berc, Maxime Bes and Brunel, Didier and Capello, Marco and Carman, Martina and Cavaliere, Adriano and Cheze, Jerome and Chiarabba, Claudio and Cougoulat, Glenn and Cristiano, Luigia and Czifra, Tibor and Danesi, Stefania and Daniel, Romuald and Dannowski, Anke and Dasovic, Iva and Deschamps, Anne and Egdorf, Sven and Fiket, Tomislav and Fischer, Kasper and Funke, Sigward and Govoni, Aladino and Groschl, Gidera and Heimers, Stefan and Heit, Ben and Herak, Davorka and Huber, Johann and Jaric, Dejan and Jedlicka, Petr and Jund, Helene and Klingen, Stefan and Klotz, Bernhard and Kolinsky, Petr and Kotek, Josef and Kuhne, Lothar and Kuk, Kreso and Lange, Dietrich and Loos, Jurgen and Lovati, Sara and Malengros, Deny and Maron, Christophe and Martin, Xavier and Massa, Marco and Mazzarini, Francesco and Metral, Laurent and Moretti, Milena and Munzarova, Helena and Nardi, Anna and Pahor, Jurij and Pequegnat, Catherine and Petersen, Florian and Piccinini, Davide and Pondrelli, Silvia and Prevolnik, Snjezan and Racine, Roman and Regnier, Marc and Reiss, Miriam and Salimbeni, Simone and Santulin, Marco and Scherer, Werner and Schippkus, Sven and Schulte-Kortnack, Detlef and Solarino, Stefano and Spieker, Kathrin and Stipcevic, Josip and Strollo, Angelo and Sule, Balint and Szanyi, Gyongyver and Szucs, Eszter and Thorwart, Martin and Ueding, Stefan and Vallocchia, Massimiliano and Vecsey, Ludek and Voigt, Rene and Weidle, Christian and Weyland, Gauthier and Wiemer, Stefan and Wolf, Felix and Wolyniec, David and Zieke, Thomas}, title = {The AlpArray seismic network}, series = {Surveys in Geophysics}, volume = {39}, journal = {Surveys in Geophysics}, number = {5}, publisher = {Springer}, address = {Dordrecht}, organization = {ETHZ SED Elect Lab AlpArray Seismic Network Team AlpArray OBS Cruise Crew AlpArray Working Grp}, issn = {0169-3298}, doi = {10.1007/s10712-018-9472-4}, pages = {1009 -- 1033}, year = {2018}, abstract = {The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.}, language = {en} } @misc{GeissmanJolivetNiemietal.2018, author = {Geissman, John and Jolivet, Laurent and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2017 Peer Reviewers}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005194}, pages = {2272 -- 2277}, year = {2018}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @article{DvornikovLeibmanHeimetal.2018, author = {Dvornikov, Yury and Leibman, Marina and Heim, Birgit and Bartsch, Annett and Herzschuh, Ulrike and Skorospekhova, Tatiana and Fedorova, Irina and Khomutov, Artem and Widhalm, Barbara and Gubarkov, Anatoly and R{\"o}ßler, Sebastian}, title = {Terrestrial CDOM in lakes of Yamal Peninsula}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10020167}, pages = {21}, year = {2018}, abstract = {In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4\% and 28.4\% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces.}, language = {en} } @misc{DvornikovLeibmanHeimetal.2018, author = {Dvornikov, Yury and Leibman, Marina and Heim, Birgit and Bartsch, Annett and Herzschuh, Ulrike and Skorospekhova, Tatiana and Fedorova, Irina and Khomutov, Artem and Widhalm, Barbara and Gubarkov, Anatoly and R{\"o}ßler, Sebastian}, title = {Terrestrial CDOM in lakes of Yamal Peninsula}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1333}, issn = {1866-8372}, doi = {10.25932/publishup-45972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459720}, pages = {21}, year = {2018}, abstract = {In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4\% and 28.4\% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces.}, language = {en} } @article{BindiCottonSpallarossaetal.2018, author = {Bindi, Dino and Cotton, Fabrice and Spallarossa, Daniele and Picozzi, Matteo and Rivalta, Eleonora}, title = {Temporal variability of ground shaking and stress drop in Central Italy}, series = {Bulletin of the Seismological Society of America}, volume = {108}, journal = {Bulletin of the Seismological Society of America}, number = {4}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120180078}, pages = {1853 -- 1863}, year = {2018}, abstract = {Ground-motion prediction equations (GMPEs) are calibrated to predict the intensity of ground shaking at any given location, based on earthquake magnitude, source-to-site distance, local soil amplifications, and other parameters. GMPEs are generally assumed to be independent of time; however, evidence is increasing that large earthquakes modify the shallow soil conditions and those of the fault zone for months or years. These changes may affect the intensity of shaking and result in time-dependent effects that can potentially be resolved by analyzing between-event residuals (residuals between observed and predicted ground motion for individual earthquakes averaged over all stations). Here, we analyze a data set of about 65,000 recordings for about 1400 earthquakes in the moment magnitude range 2.5-6.5 that occurred in central Italy from 2008 to 2017 to capture the temporal variability of the ground shaking at high frequency. We first compute between-event residuals for each earthquake in the Fourier domain with respect to a GMPE developed ad hoc for the analyzed data set. The between-events show large changes after the occurrence of mainshocks such as the 2009 Mw 6.3 L'Aquila, the 2016 Mw 6.2 Amatrice, and Mw 6.5 Norcia earthquakes. Within the time span of a few months after the mainshocks, the between-event contribution to the ground shaking varies by a factor 7. In particular, we find a large drop in the between-events in the aftermath of the L'Aquila earthquake, followed by a slow positive trend that leads to a recovery interrupted by a new drop at the beginning of 2014. We also quantify the frequency-dependent correlation between the Brune stress drop Δσ and the between-events. We find that the temporal changes of Δσ resemble those of the between-event residuals; in particular, during the period when the between-events show the positive trend, the average logarithm of Δσ increases with an annual rate of 0.19 (i.e., the amplification factor for Δσ is 1.56 per year). Breakpoint analysis located a change in the linear trend coefficients of Δσ versus time in February 2014, although no large earthquakes occurred at that time. Finally, the temporal variability of Δσ mirrors the relative seismic-velocity variations observed in previous studies for the same area and period, suggesting that both crack healing along the main fault system and healing of microcracks distributed at shallow depths throughout the surrounding region might be necessary to explain the wider observations of postearthquake recovery.}, language = {en} } @misc{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1052}, issn = {1866-8372}, doi = {10.25932/publishup-46835}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468352}, pages = {11}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @article{WillnervanStaalZagorevskietal.2018, author = {Willner, Arne P. and van Staal, Cees R. and Zagorevski, A. and Glodny, Johannes and Romer, Rolf L. and Sudo, Masafumi}, title = {Tectonometamorphic evolution along the Iapetus suture zone in Newfoundland}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {742}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2018.05.023}, pages = {137 -- 167}, year = {2018}, abstract = {The Red Indian Line (RIL) in central Newfoundland is the suture, where the main tract of the Iapetus Ocean was closed at similar to 452 Ma during accretion of the peri-Gondwanan Victoria arc with the composite active Laurentian margin. The protracted deformation history of this soft collision started at similar to 471 Ma with accretion of oceanic terranes to the active composite Laurentian margin. After Iapetus closure both colliding active margins were progressively deformed and metamorphosed during Silurian and Devonian (Salinic, Acadian and Neoacadian orogenic cycles). Peak conditions of the very low- to medium-grade, heterogeneously distributed metamorphism were determined by pseudosection techniques within the range of 2-7 kbar, 230-450 degrees C during increase of the metamorphic field gradient from similar to 12 degrees C/km to similar to 32 degrees C/km over time. Multiple metamorphic crystallisation stages were dated by white mica Ar-40/Ar-39 spot and plateau ages, additional Rb-Sr mineral isochrons involving white mica and one U/Pb age of titanite. All resulting ages between 439 +/- 4 Ma and 356 +/- 16 Ma postdate the closure of Iapetus. Results differ along two transects: The oldest ages of 443-421 Ma (Salinic orogenic cycle) were observed along the northern transect through the RIL zone with minimal younger overprint. Hence low temperature, intermediate to high pressure conditions (4.0-7.0 kbar, 230-340 degrees C) achieved during Taconic-Salinic underthrusting are well preserved. During Acadian dextral transpression the Taconic-Salinic structural wedge was tilted subvertically. In contrast, rocks along the southern transect through the RIL zone mainly show Acadian ages of 408-390 Ma with local preservation of older ages. Acadian deformation occurred under low temperature/low pressure conditions (similar to 250-450 degrees C, 2.5-4.6 kbar). Also Silurian terrestrial cover rocks were buried under these conditions. Acadian-Neoacadian deformation (393-340 Ma) becomes younger towards the northwest and progressively localized in transcurrent fault zones. This final foreland deformation at shallow crustal level established the Acadian/Neoacadian orogenic front in central Newfoundland slightly northwest of the RIL.}, language = {en} }