@article{ZurellGrimmRossmanithetal.2012, author = {Zurell, Damaris and Grimm, Volker and Rossmanith, Eva and Zbinden, Niklaus and Zimmermann, Niklaus E. and Schr{\"o}der-Esselbach, Boris}, title = {Uncertainty in predictions of range dynamics black grouse climbing the Swiss Alps}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2011.07200.x}, pages = {590 -- 603}, year = {2012}, abstract = {Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change effects on species vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic population model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indirect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced by different SDM algorithms, by different climate scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. In contrast, population size and occupied area were primarily controlled by currently negative population growth and gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predictions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such robustness analysis is an improved mechanistic understanding of dynamic species responses to climate change.}, language = {en} } @article{ZobirMocek2012, author = {Zobir, Soraya Hadj and Mocek, Beate}, title = {Determination of the source rocks for the diatexites from the Edough Massif, Annaba, NE Algeria}, series = {Journal of African earth sciences}, volume = {69}, journal = {Journal of African earth sciences}, number = {13}, publisher = {Elsevier}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2012.04.004}, pages = {26 -- 33}, year = {2012}, abstract = {The crystalline Edough Massif is located in the oriental part of the Algerian coastline. It consists of two tectonically superposed units of gneisses, augen-gneisses and migmatitic gneisses in the lower unit and micaschists in the upper unit. The crystalline rocks underwent a low to moderate degree of metamorphism; the gneisses suffered partial melting. They display migmatitic features such as nebulitic structures with contorted leucosome layers and K-feldspar porphyroblasts and thus can be classified as diatexites. The mineralogical composition of these rocks is very homogenous and consists of K-feldspar, micas and quartz. The feldspar-rich, arkosic nature of the outcrop implies a granitic source rock. High K2O/Na2O ratios and high A/CNK > 1.1 indicate an S-type granite source and a peraluminous composition of the protolith respectively. Chondrite normalized REE distribution patterns of the Edough diatexites show gently inclined patterns with a minor negative Eu anomaly (Eu/Eu* = 0.36-0.49), which points to a very slightly differentiated granitic source. The REE pattern and trace element data of the diatexites are similar to those of average Proterozoic upper continental crust, which suggests that they are derived mainly from upper continental crust and were deposited in continental margins.}, language = {en} } @article{ZimmermannFranckeElsenbeer2012, author = {Zimmermann, Alexander and Francke, Till and Elsenbeer, Helmut}, title = {Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment}, series = {Journal of hydrology}, volume = {428}, journal = {Journal of hydrology}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2012.01.039}, pages = {170 -- 181}, year = {2012}, abstract = {Forests seem to represent low-erosion systems, according to most, but not all, studies of suspended-sediment yield. We surmised that this impression reflects an accidental bias in the selection of monitoring sites towards those with prevailing vertical hydrological flowpaths, rather than a tight causal link between vegetation cover and erosion alone. To evaluate this conjecture, we monitored, over a 2-year period, a 3.3 ha old-growth rainforest catchment prone to frequent and widespread overland flow. We sampled stream flow at two and overland flow at three sites in a nested arrangement on a within-event basis, and monitored the spatial and temporal frequency of overland flow. Suspended-sediment concentrations were modeled with Random Forest and Quantile Regression Forest to be able to estimate the annual yields for the 2 years, which amounted to 1 t ha(-1) and 2 t ha(-1) in a year with below-average and with average precipitation, respectively. These estimates place our monitoring site near the high end of reported suspended-sediment yields and lend credence to the notion that low yields reflect primarily the dominance of vertical flowpaths and not necessarily and exclusively the kind of vegetative cover. Undisturbed forest and surface erosion are certainly no contradiction in terms even in the absence of mass movements.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {8}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.12.002}, pages = {37 -- 47}, year = {2012}, abstract = {In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuo-dong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {A computational fluid dynamics model for wind simulation: model implementation and experimental validation}, series = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, volume = {13}, journal = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, number = {4}, publisher = {Zhejiang University Press}, address = {Hangzou}, issn = {1673-565X}, doi = {10.1631/jzus.A1100231}, pages = {274 -- 283}, year = {2012}, abstract = {To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.}, language = {en} } @article{ZhangZhangFengetal.2012, author = {Zhang, Chengjun and Zhang, Wanyi and Feng, Zhaodong and Mischke, Steffen and Gao, Xiang and Gao, Dou and Sun, Feifei}, title = {Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {323}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.01.032}, pages = {75 -- 86}, year = {2012}, abstract = {A multi-proxy study including analyses of delta C-13(org) for the lake sediment core GN-02 and grain size, TOC. CaCO3 content, delta C-13(carb) and delta O-18(carb) of bulk carbonate, and the mineralogy of the parallel core GN-04 from Gun Nuur was performed to reconstruct the Holocene hydrology and climate on the northern Mongolian Plateau. The chronology was established using 40 C-14 dates of bulk organic matter in addition to nine previously published radiocarbon dates for core GN-02, and further five C-14 dates for the new core GN-04. A lake reservoir effect of 1060 C-14 years was determined as the intercept of the high-resolution GN-02 age-depth model at the modern sediment surface. The size of the reservoir effect is supported by the age of the core-top sample (1200 +/- 40 C-14 years) and the determined difference between a wood-derived radiocarbon age from the GN-02 core base and the age-model inferred age for bulk organic matter at the same stratigraphic level (1000 C-14 years). Low lake level and prevailing aeolian sediment deposition at Gun Nuur under dry conditions were recorded during the earliest Holocene (> 10,800-10,300 cal a BP). Gun Nuur expanded under significantly wetter conditions between 10,300 and 7000 cal a BP. Unstable climate conditions existed in the mid Holocene (7000-2500 cal a BP) and three periods of low lake-levels and significantly drier conditions were recorded between 7000-5700, 4100-3600 and 3000-2500 cal a BP. Intermediate lake levels were inferred for the intervening periods. Around 2500 cal a BP, the climate change and wetter conditions were established again. As a consequence, the lake level of Gun Nuur rose again due to higher effective moisture and the relatively wet present conditions were achieved ca. 1600 cal a BP. Our results suggest that the initial Holocene climate change on the northern Mongolian Plateau was not accompanied by a rapid increase in precipitation as on the Tibetan Plateau. The establishment of wetter conditions in northern Mongolia lagged behind the early Holocene moisture increase on the Tibetan Plateau by ca. 1000 years. Subsiding dry air in the north of the Tibetan Plateau resulted from the strengthened summer monsoon on the Tibetan Plateau during the period of maximum summer insolation and probably inhibited a significant precipitation increase in Mongolia. The significant moisture increase in the Gun Nuur region at ca. 10.3 cal ka BP is probably not related to the northward shift of the present summer monsoon boundary or the moisture delivery from the northern Atlantic through the westerlies. Instead, water from melting snow, ice and frozen ground and the generation of precipitation from the local recycling of moisture are discussed as possible moisture source for the early onset of wetter conditions on the Mongolian Plateau.}, language = {en} } @article{ZamagniMuttiKosir2012, author = {Zamagni, Jessica and Mutti, Maria and Kosir, Adrijan}, title = {The evolution of mid paleocene-early eocene coral communities how to survive during rapid global warming}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {317}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.12.010}, pages = {48 -- 65}, year = {2012}, abstract = {Today, diverse communities of zooxanthellate corals thrive, but do not build reef, under a wide range of environmental conditions. In these settings they inhabit natural bottom communities, sometimes forming patch-reefs, coral carpets and knobs. Episodes in the fossil record, characterized by limited coral-reef development but widespread occurrence of coral-bearing carbonates, may represent the fossil analogs of these non-reef building, zooxanthellate coral communities. If so, the study of these corals could have valuable implications for paleoenvironmental reconstructions. Here we focus on the evolution of early Paleogene corals as a fossil example of coral communities mainly composed by zooxanthellate corals (or likely zooxanthellate), commonly occurring within carbonate biofacies and with relatively high diversity but with a limited bioconstructional potential as testified by the reduced record of coral reefs. We correlate changes of bioconstructional potential and community compositions of these fossil corals with the main ecological/environmental conditions at that time. The early Paleogene greenhouse climate was characterized by relatively short pulses of warming with the most prominent occurring at the Paleocene-Eocene boundary (PETM event), associated with high weathering rates, nutrient fluxes, and pCO(2) levels. A synthesis of coral occurrences integrated with our data from the Adriatic Carbonate Platform (SW Slovenia) and the Minervois region (SW France), provides evidence for temporal changes in the reef-building capacity of corals associated with a shift in community composition toward forms adapted to tolerate deteriorating sea-water conditions. During the middle Paleocene coral-algal patch reefs and barrier reefs occurred from shallow-water settings, locally with reef-crest structures. A first shift can be traced from middle Paleocene to late Paleocene, with small coral-algal patch reefs and coral-bearing mounds development in shallow to intermediate water depths. In these mounds corals were highly subordinated as bioconstructors to other groups tolerant to higher levels of trophic resources (calcareous red algae, encrusting foraminifera, microbes, and sponges). A second shift occurred at the onset of the early Eocene with a further reduction of coral framework-building capacity. These coral communities mainly formed knobs in shallow-water, turbid settings associated with abundant foraminiferal deposits. We suggest that environmental conditions other than high temperature determined a combination of interrelated stressors that limited the coral-reef construction. A continuous enhancement of sediment load/nutrients combined with geochemical changes of ocean waters likely displaced corals as the main bioconstructors during the late Paleocene-early Eocene times. Nonetheless, these conditions did not affect the capacity of some corals to colonize the substrate, maintain biodiversity, and act as locally important carbonate-sediment producers, suggesting broad environmental tolerance limits of various species of corals. The implications of this study include clues as to how both ancient and modern zooxanthellate corals could respond to changing climate.}, language = {en} } @article{ZamagniMuttiBallatoetal.2012, author = {Zamagni, Jessica and Mutti, Maria and Ballato, Paolo and Kosir, Adrijan}, title = {The Paleocene-Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia)}, series = {Geological Society of America bulletin}, volume = {124}, journal = {Geological Society of America bulletin}, number = {7-8}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30553.1}, pages = {1071 -- 1086}, year = {2012}, abstract = {The Paleocene-Eocene thermal maximum represents one of the most rapid and extreme warming events in the Cenozoic. Shallow-water stratigraphic sections from the Adriatic carbonate platform offer a rare opportunity to learn about the nature of Paleocene-Eocene thermal maximum and the effects on shallow-water ecosystems. We use carbon and oxygen isotope stratigraphy, in conjunction with detailed larger benthic foraminiferal biostratigraphy, to establish a high-resolution paleoclimatic record for the Paleocene-Eocene thermal maximum. A prominent negative excursion in delta C-13 curves of bulk-rock (similar to 1 parts per thousand-3 parts per thousand), matrix (similar to 4 parts per thousand), and foraminifera (similar to 6 parts per thousand) is interpreted as the carbon isotope excursion during the Paleocene-Eocene thermal maximum. The strongly C-13-depleted delta(1)d(3)C record of our shallow-marine carbonates compared to open-marine records could result from organic matter oxidation, suggesting intensified weathering, runoff, and organic matter flux. The Ilerdian larger benthie foraminiferal turnover is documented in detail based on high-resolution correlation with the carbon isotopic excursion. The turnover is described as a two-step process, with the first step (early Ilerdian) marked by a rapid diversification of small alveolinids and nummulitids with weak adult dimorphism, possibly as adaptations to fluctuating Paleocene-Eocene thermal maximum nutrient levels, and a second step (middle Ilerdian) characterized by a further specific diversification, increase of shell size, and well-developed adult dimorphism. Within an evolutionary scheme controlled by long-term biological processes, we argue that high seawater temperatures could have stimulated the early Ilerdian rapid specific diversification. Together, these data help elucidate the effects of global warming and associated feedbacks in shallow-water ecosystems, and by inference, could serve as an assessment analog for future changes.}, language = {en} } @article{WulfBookhagenScherler2012, author = {Wulf, Hendrik and Bookhagen, Bodo and Scherler, Dirk}, title = {Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya}, series = {Hydrology and earth system sciences : HESS}, volume = {16}, journal = {Hydrology and earth system sciences : HESS}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-16-2193-2012}, pages = {2193 -- 2217}, year = {2012}, abstract = {The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (a parts per thousand yen 99th SSC percentile) coincide frequently (57-80\%) with heavy rainstorms and account for about 30\% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent monsoonal rainstorms across the Himalaya, we expect an increase in peak SSC events, which will decrease the water quality and impact hydropower generation.}, language = {en} } @article{WillnerMassonneRingetal.2012, author = {Willner, Arne P. and Massonne, Hans-Joachim and Ring, Uwe and Sudo, Masafumi and Thomson, Stuart N.}, title = {P-T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31-32 degrees S)}, series = {Geological magazine}, volume = {149}, journal = {Geological magazine}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0016-7568}, doi = {10.1017/S0016756811000641}, pages = {177 -- 207}, year = {2012}, abstract = {In the late Palaeozoic fore-arc system of north-central Chile at latitudes 31-32 degrees S (from the west to the east) three lithotectonic units are telescoped within a short distance by a Mesozoic strikeslip event (derived peak P-T conditions in brackets): (1) the basally accreted Choapa Metamorphic Complex (CMC; 350-430 degrees C, 6-9 kbar), (2) the frontally accreted Arrayan Formation (AF; 280-320 degrees C, 4-6 kbar) and (3) the retrowedge basin of the Huentelauquen Formation (HF; 280-320 degrees C, 3-4 kbar). In the CMC, Ar-Ar spot ages locally date white-mica formation at peak P-T conditions and during early exhumation at 279-242 Ma. In a local garnet mica-schist intercalation (570-585 degrees C, 11-13 kbar) Ar-Ar spot ages refer to the ascent from the subduction channel at 307-274 Ma. Portions of the CMC were isobarically heated to 510-580 degrees C at 6.6-8.5 kbar. The age of peak P-T conditions in the AF can only vaguely be approximated at >= 310 Ma by relict fission-track ages consistent with the observation that frontal accretion occurred prior to basal accretion. Zircon fission-track dating indicates cooling below similar to 280 degrees C at similar to 248 Ma in the CMC and the AF, when a regional unconformity also formed. Ar-Ar white-mica spot ages in parts of the CMC and within the entire AF and HF point to heterogeneous resetting during Mesozoic extensional and shortening events at similar to 245-240 Ma, similar to 210-200 Ma, similar to 174-159 Ma and similar to 142-127 Ma. The zircon fission-track ages are locally reset at 109-96 Ma. All resetting of Ar-Ar white-mica ages is proposed to have occurred by in situ dissolution/precipitation at low temperature in the presence of locally penetrating hydrous fluids. Hence syn-and postaccretionary events in the fore-arc system can still be distinguished and dated in spite of its complex heterogeneous postaccretional overprint.}, language = {en} } @article{WilkeVasquezWiersbergetal.2012, author = {Wilke, Franziska Daniela Helena and Vasquez, Monica and Wiersberg, Thomas and Naumann, Rudolf and Erzinger, J{\"o}rg}, title = {On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {27}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2012.04.012}, pages = {1615 -- 1622}, year = {2012}, abstract = {The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP-MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.\%) and SO2 or NO2 impurities (0.5 vol.\%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7-8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.\% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.}, language = {en} } @article{WilkeSobelO'Brienetal.2012, author = {Wilke, Franziska Daniela Helena and Sobel, Edward and O'Brien, Patrick J. and Stockli, Daniel F.}, title = {Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation}, series = {Journal of Asian earth sciences}, volume = {59}, journal = {Journal of Asian earth sciences}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2012.06.014}, pages = {14 -- 23}, year = {2012}, abstract = {Apatite fission track and apatite and zircon (U-Th)/He ages were obtained from high- and ultra high-pressure rocks from the Kaghan Valley, Pakistan. Four samples from the high altitude northern parts of the valley yielded apatite fission track ages between 24.5 +/- 3.7 and 15.6 +/- 2.1 Ma and apatite (U-Th)/He ages between 21.0 +/- 0.6 and 5.3 +/- 0.2 Ma. These data record cooling of the formerly deeply-subducted high-grade metamorphic rocks induced by denudation and exhumation consistent with extension and back sliding along the reactivated, normal-acting Main Mantle Thrust. Overlap at around 10 Ma between fission track and (U-Th)/He ages is recognised at one location (Besal) showing that fast cooling occurred due to brittle reactivation of a former thrust fault. Widespread Miocene cooling is also evident in adjacent areas to the west (Deosai Plateau, Tso Moran), most likely related to uplift and unroofing linked to continued underplating of the Indian lower crust beneath Ladakh and Kohistan in the Late Eocene to Oligocene. In the southernmost part of the study area, near Naran, two significantly younger Late Miocene to Pliocene apatite fission track ages of 7.6 +/- 2.1 to 4.0 +/- 0.5 Ma suggest a spatial and temporal separation of exhumation processes. These younger ages are best explained by enhanced Late Miocene uplift and erosion driven by thrusting along the Main Boundary Thrust.}, language = {en} } @article{WendeWojtkiewiczMarschalletal.2012, author = {Wende, Wolfgang and Wojtkiewicz, Wera and Marschall, Ilke and Heiland, Stefan and Lipp, Torsten and Reinke, Markus and Schaal, Peter and Schmidt, Catrin}, title = {Putting the plan into practice implementation of proposals for measures of local landscape plans}, series = {Landscape research}, volume = {37}, journal = {Landscape research}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0142-6397}, doi = {10.1080/01426397.2011.592575}, pages = {483 -- 500}, year = {2012}, abstract = {The knowledge of the effectiveness of local landscape planning in Germany is in the main limited to particular cases and derives mostly from qualitative single case studies. This applies especially to the implementation of measures defined by landscape plans. To fill that gap, the paper focuses on the implementation of those measures. Furthermore, it discusses the factors and framework conditions which are crucial for this implementation. The potential factors and conditions of influence were derived from theory and compiled in 20 investigation hypotheses. In order to gain information on the execution of the measures, 28 randomly selected plans were first analysed, then interviews were carried out with administration representatives. It can be stated that landscape planning has positively influenced the development of nature and landscape in the investigated municipalities. A considerable number of measures had been implemented, although landscape planning as a supply-side instrument proposes generally a very large number of measures. Factors with a positive effect on the implementation of landscape planning measures are pointed out.}, language = {en} } @article{WeberHelwigBaueretal.2012, author = {Weber, Michael H. and Helwig, S. L. and Bauer, Klaus and Haberland, Christian and Koch, Olaf and Ryberg, T. and Maercklin, N. and Ritter, O. and Schulze, A.}, title = {Near-surface properties of an active fault derived by joint interpretation of different geophysical methods - the Arava/Araba Fault in the Middle East}, series = {Near surface geophysics}, volume = {10}, journal = {Near surface geophysics}, number = {5}, publisher = {European Association of Geoscientists \& Engineers}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2012031}, pages = {381 -- 390}, year = {2012}, abstract = {The motion of tectonic plates is accommodated at fault zones. One of the unanswered questions about fault zones relates to the role they play in controlling shallow and local hydrology. This study focuses on the Arava/Araba Fault (AF) zone, the southern portion of the Dead Sea Transform (DST) in the Middle East. We combine seismic and electromagnetic methods (EM) to image the geometry and map the petro-physical properties and water occurrence in the top 100 m of this active fault. For three profiles, P-velocity and resistivity images were derived independently. Using a neural network cluster analysis three classes with similar P-velocity and resistivities could then be determined from these images. These classes correspond to spatial domains of specific material and wetness. The first class occurs primarily east of the fault consisting of 'wet' sand (dunes) and brecciated sediments, whereas the second class composed of similar material located west of the fault is 'dry'. The third class lies at depth below ca. 50 m and is composed of highly deformed and weathered Precambrian rocks that constitute the multi-branch fault zone of the AF at this location. The combination of two independent measurements like seismics and EM linked by a stringent mathematical approach has thus shown the potential to delineate the interplay of lithology and water near active faults.}, language = {en} } @article{WangLiuMischkeetal.2012, author = {Wang, Yongbo and Liu, Xingqi and Mischke, Steffen and Herzschuh, Ulrike}, title = {Environmental constraints on lake sediment mineral compositions from the Tibetan Plateau and implications for paleoenvironment reconstruction}, series = {Journal of paleolimnolog}, volume = {47}, journal = {Journal of paleolimnolog}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9549-2}, pages = {71 -- 85}, year = {2012}, abstract = {Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (< 0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4-5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records.}, language = {en} } @article{WangLiuHerzschuhetal.2012, author = {Wang, Yongbo and Liu, Xingqi and Herzschuh, Ulrike and Yang, Xiangdong and Birks, H. John B. and Zhang, Enlou and Tong, Guobang}, title = {Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {353}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.06.022}, pages = {10 -- 20}, year = {2012}, abstract = {Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies.}, language = {en} } @article{VorpahlElsenbeerMaerkeretal.2012, author = {Vorpahl, Peter and Elsenbeer, Helmut and M{\"a}rker, Michael and Schr{\"o}der-Esselbach, Boris}, title = {How can statistical models help to determine driving factors of landslides?}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {239}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2011.12.007}, pages = {27 -- 39}, year = {2012}, abstract = {Landslides are a hazard for humans and artificial structures. From an ecological point of view, they represent an important ecosystem disturbance, especially in tropical montane forests. Here, shallow translational landslides are a frequent natural phenomenon and one local determinant of high levels of biodiversity. In this paper, we apply weighted ensembles of advanced phenomenological models from statistics and machine learning to analyze the driving factors of natural landslides in a tropical montane forest in South Ecuador. We exclusively interpret terrain attributes, derived from a digital elevation model, as proxies to several driving factors of landslides and use them as predictors in our models which are trained on a set of five historical landslide inventories. We check the model generality by transferring them in time and use three common performance criteria (i.e. AUC, explained deviance and slope of model calibration curve) to, on the one hand, compare several state-of-the-art model approaches and on the other hand, to create weighted model ensembles. Our results suggest that it is important to consider more than one single performance criterion. Approaching our main question, we compare responses of weighted model ensembles that were trained on distinct functional units of landslides (i.e. initiation, transport and deposition zones). This way, we are able to show that it is quite possible to deduce driving factors of landslides, if the consistency between the training data and the processes is maintained. Opening the 'black box' of statistical models by interpreting univariate model response curves and relative importance of single predictors regarding their plausibility, we provide a means to verify this consistency. With the exception of classification tree analysis, all techniques performed comparably well in our case study while being outperformed by weighted model ensembles. Univariate response curves of models trained on distinct functional units of landslides exposed different shapes following our expectations. Our results indicate the occurrence of landslides to be mainly controlled by factors related to the general position along a slope (i.e. ridge, open slope or valley) while landslide initiation seems to be favored by small scale convexities on otherwise plain open slopes.}, language = {en} } @article{VinnikSilveiraKiselevetal.2012, author = {Vinnik, Lev and Silveira, Graca and Kiselev, Sergei and Farra, Veronique and Weber, Michael H. and Stutzmann, Eleonore}, title = {Cape verde hotspot from the upper crust to the top of the lower mantle}, series = {Earth \& planetary science letters}, volume = {319}, journal = {Earth \& planetary science letters}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.12.017}, pages = {259 -- 268}, year = {2012}, abstract = {We investigate the crust, upper mantle and mantle transition zone of the Cape Verde hotspot by using seismic P and S receiver functions from several tens of local seismograph stations. We find a strong discontinuity at a depth of similar to 10 km underlain by a similar to 15-km thick layer with a high (similar to 1.9) Vp/Vs velocity ratio. We interpret this discontinuity and the underlying layer as the fossil Moho, inherited from the pre-hotspot era, and the plume-related magmatic underplate. Our uppermost-mantle models are very different from those previously obtained for this region: our S velocity is much lower and there are no indications of low densities. Contrary to previously published arguments for the standard transition zone thickness our data indicate that this thickness under the Cape Verde islands is up to similar to 30 km less than in the ambient mantle. This reduction is a combined effect of a depression of the 410-km discontinuity and an uplift of the 660-km discontinuity. The uplift is in contrast to laboratory data and some seismic data on a negligible dependence of depth of the 660-km discontinuity on temperature in hotspots. A large negative pressure-temperature slope which is suggested by our data implies that the 660-km discontinuity may resist passage of the plume. Our data reveal beneath the islands a reduction of S velocity of a few percent between 470-km and 510-km depths. The low velocity layer in the upper transition zone under the Cape Verde archipelago is very similar to that previously found under the Azores and a few other hotspots. In the literature there are reports on a regional 520-km discontinuity, the impedance of which is too large to be explained by the known phase transitions. Our observations suggest that the 520-km discontinuity may present the base of the low-velocity layer in the transition zone.}, language = {en} } @article{VinnikKiselevWeberetal.2012, author = {Vinnik, L. and Kiselev, S. and Weber, Michael H. and Oreshin, S. and Makeyeva, L.}, title = {Frozen and active seismic anisotropy beneath southern Africa}, series = {Geophysical research letters}, volume = {39}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2012GL051326}, pages = {6}, year = {2012}, abstract = {P receiver functions from 23 stations of the SASE experiment in southern Africa are inverted simultaneously with SKS waveforms for azimuthal anisotropy in the upper mantle. Our analysis resolves the long-standing issue of depth dependence and origins of anisotropy beneath southern Africa. In the uppermost mantle we observe anisotropy with a nearly E-W fast direction, parallel to the trend of the Limpopo belt. This anisotropy may be frozen since the Archean. At a depth of 160 km the fast direction of anisotropy changes to 40 degrees and becomes close to the recent plate motion direction. This transition is nearly coincident in depth with activation of dominant glide systems in olivine and with a pronounced change in other properties of the upper mantle. Another large change in the fast direction of anisotropy corresponds to the previously found low-S-velocity layer atop the 410-km discontinuity. Citation: Vinnik, L., S. Kiselev, M. Weber, S. Oreshin, and L. Makeyeva (2012), Frozen and active seismic anisotropy beneath southern Africa, Geophys. Res. Lett., 39, L08301, doi: 10.1029/2012GL051326.}, language = {en} } @article{VanderMeerenMischkeSunjidmaaetal.2012, author = {Van der Meeren, T. and Mischke, Steffen and Sunjidmaa, N. and Herzschuh, Ulrike and Ito, E. and Martens, K. and Verschuren, Dirk}, title = {Subfossil ostracode assemblages from Mongolia quantifying response for paleolimnological applications}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.004}, pages = {138 -- 151}, year = {2012}, abstract = {Ostracodes (Ostracoda, Crustacea) are aquatic micro-crustaceans with a significant representation in the fossil record. If the environmental influence on the species composition of their communities is robustly quantified, past changes in ostracode communities reflected in fossil assemblages can be used for paleo-environmental reconstruction. We analyzed ostracode assemblages in recently deposited surface sediments from 56 lakes in western and central Mongolia, and simultaneously recorded local water chemistry and solute concentration in order to elucidate the distribution of individual ostracode species in relation to these broad environmental gradients. Multivariate analysis indicated that the species variation in ostracode assemblages could be mainly attributed to variations in percent calcium (\%Ca) relative to total cation content, mean annual precipitation, calcium concentration, alkalinity, percent bicarbonate relative to total anion content, and mean July temperature. This matches well with the results of a similar analysis on presence/absence data of living ostracodes in nearshore samples, even though some differences exist between the faunal composition of both datasets. The documented response of ostracode species to environmental variation tracks the typical solute evolutionary pathway for surface waters in this region, characterized by calcite precipitation and consequent depletion in dissolved calcium. Hence, the best quantitative inference model (WA-PLS model with R-jack(2) = 0.70, RMSEP = 0.40) for paleolimnological application was obtained for \%Ca. Comparison between this model and a specific conductance (SC) inference model based on the same dataset, and based on ostracode datasets from different regions, indicated that the \%Ca inference model suffers less than the SC inference model from a step-change in reconstructed values. The statistical power of different inference models based on Mongolian ostracodes are variously affected by the common dominance of a single euryhaline species (Limnocythere inopinata), limited faunal turnover in the freshwater portion of the salinity gradient, and the bimodal frequency distribution of SC among regional lakes. The latter probably represents true scarcity of lakes with intermediate salinity rather than a biased representation in our dataset. In a broader context of ostracode ecology, and with respect to regional paleolimnological applications, we highlight the potential of fossil Mongolian ostracode assemblages to trace past hydrological shifts associated with changes in groundwater inflow.}, language = {en} } @article{TronickePaascheBoeniger2012, author = {Tronicke, Jens and Paasche, Hendrik and B{\"o}niger, Urs}, title = {Crosshole traveltime tomography using particle swarm optimization a near-surface field example}, series = {Geophysics}, volume = {77}, journal = {Geophysics}, number = {1}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2010-0411.1}, pages = {R19 -- R32}, year = {2012}, abstract = {Particle swarm optimization (PSO) is a relatively new global optimization approach inspired by the social behavior of bird flocking and fish schooling. Although this approach has proven to provide excellent convergence rates in different optimization problems, it has seldom been applied to inverse geophysical problems. Until today, published geophysical applications mainly focus on finding an optimum solution for simple, 1D inverse problems. We have applied PSO-based optimization strategies to reconstruct 2D P-wave velocity fields from crosshole traveltime data sets. Our inversion strategy also includes generating and analyzing a representative ensemble of acceptable models, which allows us to appraise uncertainty and nonuniqueness issues. The potential of our strategy was tested on field data collected at a well-constrained test site in Horstwalde, Germany. At this field site, the shallow subsurface mainly consists of sand- and gravel-dominated glaciofluvial sediments, which, as known from several boreholes and other geophysical experiments, exhibit some well-defined layering at the scale of our crosshole seismic data. Thus, we have implemented a flexible, layer-based model parameterization, which, compared with standard cell-based parameterizations, allows for significantly reducing the number of unknown model parameters and for efficiently implementing a priori model constraints. Comparing the 2D velocity fields resulting from our PSO strategy to independent borehole and direct-push data illustrated the benefits of choosing an efficient global optimization approach. These include a straightforward and understandable appraisal of nonuniqueness issues as well as the possibility of an improved and also more objective interpretation.}, language = {en} } @article{ThomasLischeidSteidletal.2012, author = {Thomas, Bj{\"o}rn and Lischeid, Gunnar and Steidl, J{\"o}rg and Dannowski, Ralf}, title = {Regional catchment classification with respect to low flow risk in a Pleistocene landscape}, series = {Journal of hydrology}, volume = {475}, journal = {Journal of hydrology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2012.10.020}, pages = {392 -- 402}, year = {2012}, abstract = {The classification of small catchments with respect to low flow risk is needed by water and environmental managers to plan adaptation measures for freshwater streams. In this study a new approach is presented to assess the risk of seasonal low flow in the Pleistocene landscape of the Federal State of Brandenburg in Germany. Seasonal low flow and drought in small streams is very common in this region and is predicted to increase due to climate change within the next decades. Data of 15 years (1991-2006) of daily discharge at 37 small catchments (<500 km(2)) and rainfall data from the same region were used. Principal component analyses were applied to the two data sets separately. The first five principal components of the discharge data, principal components of a precipitation data set covering the same catchments and catchment characteristics were used to explain the patterns found. The first five discharge components explained 72.9\% of the total variance in the data set. The first component reflected the general regional discharge pattern. Components 2 and 3 of the discharge data could be related to spatial patterns of precipitation. Components 4 and 5 of the discharge data reflected geohydrologic processes within the catchments. In order to identify catchments with high risk with respect to low flows, component three and five were important as they both identified catchments with faster decrease of flows during summer. These components were used to estimate low flow risk. Catchments located in the northeast of Brandenburg, especially those in the Barnim highlands north and east of Berlin, were identified to be prone to seasonal low flow. There water management measures to adapt to climate change are needed the most.}, language = {en} } @article{TekkenKropp2012, author = {Tekken, Vera and Kropp, J{\"u}rgen}, title = {Climate-Driven or Human-Induced indicating severe water scarcity in the Moulouya River Basin (Morocco)}, series = {Water}, volume = {4}, journal = {Water}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w4040959}, pages = {959 -- 982}, year = {2012}, abstract = {Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB) shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m(3) per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.}, language = {en} } @article{SzurliesGelukKrijgsmanetal.2012, author = {Szurlies, Michael and Geluk, Mark C. and Krijgsman, Wout and Kurschner, Wolfram M.}, title = {The continental Permian-Triassic boundary in the Netherlands implications for the geomagnetic polarity time scale}, series = {Earth \& planetary science letters}, volume = {317}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.11.043}, pages = {165 -- 176}, year = {2012}, abstract = {In Central and NW Europe, the transition from the Permian to the Triassic (i.e., the Zechstein-Buntsandstein boundary interval) is developed mainly in red bed facies. This continental sedimentary succession is marked by relatively high sedimentation rates providing a high temporal resolution favorable for magnetic polarity stratigraphy. Here, we present a Zechstein to Lower Buntsandstein magnetostratigraphy obtained from the c. 100 m thick Everdingen-1 core from the Netherlands. Seven magnetozones (EV1n to EV4n) and five submagnetozones (EV1n.1r to EV3r.1n) have been delineated. The Everdingen-1 magnetostratigraphy has been integrated into the well-established high-resolution Zechstein-Buntsandstein stratigraphic framework, and verifies the geomagnetic polarity record from Central Germany. This confirms the hypothesis of nearly synchronous base-level cycles within the interior of the Central European Basin. These cycles are related to solar-induced similar to 100 ka eccentricity cycles. The most distinctive feature of the Everdingen-1 magnetostratigraphy is a transition from a thin reverse to a thick dominantly normal magnetic polarity interval. This reversal predates both the terrestrial mass extinction, which is indicated by a palynofloral turnover and a major sediment provenance change at the base of the Buntsandstein, and the marine Permian-Triassic Boundary (PTB). The PTB is located within the lowermost Buntsandstein and is approximated by the last occurrence of the conchostracan Falsisca postera and a negative excursion in the carbon isotope record. According to the Buntsandstein cyclostratigraphy, the R/N reversal predates the marine end-Permian extinction event by about 0.1 Ma and the marine biostratigraphic PTB by about 0.2 Ma. The thick normal magnetozone is estimated to have lasted c. 700 ka, and roughly coincides with the main phase of Siberian Trap volcanism.}, language = {en} } @article{StuderMartinezGarciaJaccardetal.2012, author = {Studer, Anja S. and Martinez-Garcia, Alfredo and Jaccard, Samuel L. and Girault, France E. and Sigman, Daniel M. and Haug, Gerald H.}, title = {Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere Glaciation-New evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers}, series = {Earth \& planetary science letters}, volume = {351}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.07.029}, pages = {84 -- 94}, year = {2012}, abstract = {Coincident with the intensification of Northern Hemisphere Glaciation (WIG) around 2.73 million years (Ma) ago, sediment cores from both the open subarctic North Pacific and the Antarctic indicate a rapid decline in diatom opal accumulation flux to the seabed, representing one of the most abrupt and dramatic changes in the marine sediment record associated with the development of Pleistocene glacial cycles. In the North Pacific, bulk sediment nitrogen isotope data and alkenone-derived sea surface temperature (SST) estimates suggest that the productivity decline was driven by reduced exchange between surface and deep water, due to weaker wind-driven upwelling and/or a strengthening of the halocline (i.e. "stratification"). In this study of the 2.73 Ma transition at Ocean Drilling Program (ODP) Site 882 in the western subarctic North Pacific, diatom-bound nitrogen isotopes (delta N-15(db)), alkenone mass accumulation rate, and alkenone- and archaeal tetraether-based SST reconstructions support the stratification hypothesis, indicating perennially lower export production, generally higher nitrate consumption, and greater inter-seasonal variation in SST after the 2.73 Ma transition. In addition, the delta N-15(db) of large and small size fractions of Coscinodiscus spp. suggest that these diatoms grew mostly during the spring bloom during the late Pliocene, switching to their current fall-to-winter growth period at the 2.73 Ma transition; this view is consistent with their decline in dominance and provides further evidence for increased stratification (reduced vertical exchange) in the North Pacific after 2.73 Ma. The delta N-15(db) data indicate that, over the similar to 100 kyr period after the 2.73 Ma transition studied here, nitrate consumption did not reach late Pleistocene ice age levels and that nitrate consumption in post-2.73 Ma warm stages was similar to that before the transition, even though productivity was greatly reduced. We tentatively attribute this to relatively weak dust-borne iron inputs in the early post-2.73 Ma period.}, language = {en} } @article{StrolloParolaiBindietal.2012, author = {Strollo, Angelo and Parolai, Stefano and Bindi, Dino and Chiauzzi, Leonardo and Pagliuca, Rossella and Mucciarelli, Marco and Zschau, Jochen}, title = {Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {10}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-011-9256-4}, pages = {493 -- 516}, year = {2012}, abstract = {A temporary seismic network composed of 11 stations was installed in the city of Potenza (Southern Italy) to record local and regional seismicity within the context of a national project funded by the Italian Department of Civil Protection (DPC). Some stations were moved after a certain time in order to increase the number of measurement points, leading to a total of 14 sites within the city by the end of the experiment. Recordings from 26 local earthquakes (M-l 2.2-3.8 ) were analyzed to compute the site responses at the 14 sites by applying both reference and non-reference site techniques. Furthermore, the Spectral Intensity (SI) for each local earthquake, as well as their ratios with respect to the values obtained at a reference site, were also calculated. In addition, a field survey of 233 single station noise measurements within the city was carried out to increase the information available at localities different from the 14 monitoring sites. By using the results of the correlation analysis between the horizontal-to-vertical spectral ratios computed from noise recordings (NHV) at the 14 selected sites and those derived by the single station noise measurements within the town as a proxy, the spectral intensity correction factors for site amplification obtained from earthquake analysis were extended to the entire city area. This procedure allowed us to provide a microzonation map of the urban area that can be directly used when calculating risk scenarios for civil defence purposes. The amplification factors estimated following this approach show values increasing along the main valley toward east where the detrital and alluvial complexes reach their maximum thickness.}, language = {en} } @article{StankiewiczWeberMohsenetal.2012, author = {Stankiewicz, Jacek and Weber, Michael H. and Mohsen, Ayman and Hofstetter, Rami}, title = {Dead Sea Basin imaged by ambient seismic noise tomography}, series = {Pure and applied geophysics}, volume = {169}, journal = {Pure and applied geophysics}, number = {4}, publisher = {Springer}, address = {Basel}, issn = {0033-4553}, doi = {10.1007/s00024-011-0350-y}, pages = {615 -- 623}, year = {2012}, abstract = {In the framework of the Dead Sea Integrated Research project (DESIRE), 59 seismological stations were deployed in the region of the Dead Sea Basin. Twenty of these stations recorded data of sufficiently high quality between May and September 2007 to be used for ambient seismic noise analysis. Empirical Green's functions are extracted from cross-correlations of long term recordings. These functions are dominated by Rayleigh waves, whose group velocities can be measured in the frequency range from 0.1 to 0.5 Hz. Analysis of positive and negative correlation lags of the Green's functions makes it possible to identify the direction of the source of the incoming energy. Signals with frequencies higher than 0.2 Hz originate from the Mediterranean Sea, while low frequencies arrive from the direction of the Red Sea. Travel times of the extracted Rayleigh waves were measured between station pairs for different frequencies, and tomographically inverted to provide independent velocity models. Four such 2D models were computed for a set of frequencies, all corresponding to different sampling depths, and thus together giving an indication of the velocity variations in 3D extending to a depth of 10 km. The results show low velocities in the Dead Sea Basin, consistent with previous studies suggesting up to 8 km of recent sedimentary infill in the Basin. The complex structure of the western margin of the Basin is also observed, with sedimentary infill present to depths not exceeding 5 km west of the southern part of the Dead Sea. The high velocities associated with the Lisan salt diapir are also observed down to a depth of similar to 5 km. The reliability of the results is confirmed by checkerboard recovery tests.}, language = {en} } @article{SpenglerObataHirajimaetal.2012, author = {Spengler, D. and Obata, M. and Hirajima, T. and Ottolini, L. and Ohfuji, H. and Tamura, A. and Arai, S.}, title = {Exsolution of garnet and clinopyroxene from High-Al Pyroxenes in Xugou Peridotite, Eastern China}, series = {Journal of petrology}, volume = {53}, journal = {Journal of petrology}, number = {7}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egs023}, pages = {1477 -- 1504}, year = {2012}, abstract = {Serpentinized massif peridotite in the Xugou, Su-Lu ultrahigh-pressure (UHP) metamorphic belt, eastern China, preserves texturally old (porphyroclastic) ortho- and clinopyroxene with up to two generations of lamellae of garnet, clinopyroxene and Mg-chromite. Their crystallographic orientation with respect to the host pyroxene is consistent with an origin by solid-state exsolution. Comparison of integrated mineral chemistry with simplified and natural chemical datasets suggests that both aluminous precursor pyroxenes were in equilibrium at a minimum pressure of similar to 4 GPa and within a temperature range of about 1300-1500 degrees C. Steep isopleths of Ca in orthopyroxene imply that exsolution occurred during cooling. Al diffusion modelling suggests growth of widely spaced lamellae in orthopyroxene down to about 900 degrees C. Integrated Al contents between wide lamellae record a minimum of 4 GPa pressure during cooling. Compositionally uniform exsolved minerals were formed at 4 center dot 3 +/- 0 center dot 3 GPa and 730 +/- 30 degrees C and reflect a cratonic geotherm with about 33 mW m(-2) surface heat flow. The peridotite matrix mineral assemblage of olivine + orthopyroxene +/- garnet +/- Mg-chromite +/- clinopyroxene +/- phlogopite records strain-induced recrystallization that partially to completely replaced precursor porphyroclasts. The recrystallized minerals lack lamellar exsolution. Recrystallized orthopyroxene, with Al2O3 at 0 center dot 13 wt \%, indicates conditions of 5 center dot 5 +/- 0 center dot 3 GPa and 760 +/- 30 degrees C, which are higher-grade metamorphic conditions than those preserved in the chemically equilibrated exsolution microstructures. Both estimates overlap with the range reported for the Early Mesozoic UHP metamorphism in the region (4 center dot 0-6 center dot 7 GPa and 760-970 degrees C). Major element melt models applied to previously published Xugou peridotite data suggest high degrees of melt extraction (30-35 \%) in the garnet peridotite stability field (3-4 center dot 5 GPa) until garnet and clinopyroxene exhaustion. Coincidence in pressure and in the order of temperature of equilibration of precursor pyroxenes and peridotite melting implies that peridotite formation occurred at similar to 135 km depth in the subcontinental lithospheric mantle (SCLM) beneath the Archaean North China Craton. Subsequent refertilization, mineral exsolution and chemical re-equilibration during long-term cooling in the SCLM occurred prior to deformation and incorporation of the mantle fragment into the continental crust during UHP metamorphism at a minimum depth of 170 km. Because the Xugou precursor pyroxenes and peridotite formed at depths greater than the regional SCLM (c. 90 km), we infer that the orogenic peridotite massif formed part of the former hanging wall of the Archaean SCLM, which delaminated after the Late Mesozoic.}, language = {en} } @article{SchwanghartHeckmann2012, author = {Schwanghart, Wolfgang and Heckmann, Tobias}, title = {Fuzzy delineation of drainage basins through probabilistic interpretation of diverging flow algorithms}, series = {Environmental modelling \& software with environment data news}, volume = {33}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2012.01.016}, pages = {106 -- 113}, year = {2012}, abstract = {The assessment of uncertainty is a major challenge in geomorphometry. Methods to quantify uncertainty in digital elevation models (DEM) are needed to assess and report derivatives such as drainage basins. While Monte-Carlo (MC) techniques have been developed and employed to assess the variability of second-order derivatives of DEMs, their application requires explicit error modeling and numerous simulations to reliably calculate error bounds. Here, we develop an analytical model to quantify and visualize uncertainty in drainage basin delineation in DEMs. The model is based on the assumption that multiple flow directions (MFD) represent a discrete probability distribution of non-diverging flow networks. The Shannon Index quantifies the uncertainty of each cell to drain into a specific drainage basin outlet. In addition, error bounds for drainage areas can be derived. An application of the model shows that it identifies areas in a DEM where drainage basin delineation is highly uncertain owing to flow dispersion on convex landforms such as alluvial fans. The model allows for a quantitative assessment of the magnitudes of expected drainage area variability and delivers constraints for observed volatile hydrological behavior in a palaeoenvironmental record of lake level change. Since the model cannot account for all uncertainties in drainage basin delineation we conclude that a joint application with MC techniques is promising for an efficient and comprehensive error assessment in the future.}, language = {en} } @article{SchmelzbachTronickeDietrich2012, author = {Schmelzbach, C. and Tronicke, Jens and Dietrich, P.}, title = {High-resolution water content estimation from surface-based ground-penetrating radar reflection data by impedance inversion}, series = {Water resources research}, volume = {48}, journal = {Water resources research}, number = {31}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2012WR011955}, pages = {16}, year = {2012}, abstract = {Mapping hydrological parameter distributions in high resolution is essential to understand and simulate groundwater flow and contaminant transport. Of particular interest is surface-based ground-penetrating radar (GPR) reflection imaging in electrically resistive sediments because of the expected close link between the subsurface water content and the dielectric permittivity, which controls GPR wave velocity and reflectivity. Conventional tools like common midpoint (CMP) velocity analysis provide physical parameter models of limited resolution only. We present a novel reflection amplitude inversion workflow for surface-based GPR data capable of resolving the subsurface dielectric permittivity and related water content distribution with markedly improved resolution. Our scheme is an adaptation of a seismic reflection impedance inversion scheme to surface-based GPR data. Key is relative-amplitude-preserving data preconditioning including GPR deconvolution, which results in traces with the source-wavelet distortions and propagation effects largely removed. The subsequent inversion for the underlying dielectric permittivity and water content structure is constrained by in situ dielectric permittivity data obtained by direct-push logging. After demonstrating the potential of our novel scheme on a realistic synthetic data set, we apply it to two 2-D 100 MHz GPR profiles acquired over a shallow sedimentary aquifer resulting in water content images of the shallow (3-7 m depth) saturated zone having decimeter resolution.}, language = {en} } @article{SchildgenCosentinoCarusoetal.2012, author = {Schildgen, Taylor F. and Cosentino, D. and Caruso, A. and Buchwaldt, Robert and Yildirim, C. and Bowring, S. A. and Rojay, B. and Echtler, Helmut Peter and Strecker, Manfred}, title = {Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey}, series = {TECTONICS}, volume = {31}, journal = {TECTONICS}, publisher = {AMER GEOPHYSICAL UNION}, address = {WASHINGTON}, issn = {0278-7407}, doi = {10.1029/2011TC003021}, pages = {21}, year = {2012}, abstract = {The southwest margin of the Central Anatolian Plateau has experienced multiple phases of topographic growth, including the formation of localized highs prior to the Late Miocene that were later affected by wholesale uplift of the plateau margin. Our new biostratigraphic data limit the age of uplifted marine sediments at the southwest plateau margin at 1.5 km elevation to <7.17 Ma, and regional lithostratigraphic correlations imply that the age is <6.7 Ma. Single-grain CA-TIMS U-Pb zircon analyses from a reworked ash within the marine sediments yield dates as young as 10.6 Ma, indicating a maximum age that is consistent with the biostratigraphy. Our structural measurements within the uplifted region and fault inversion modeling agree with previous findings in surrounding regions, with early contraction followed by strike-slip and extensional deformation during uplift. Focal mechanisms from shallow earthquakes show that the extensional phase has continued to the present. Broad similarities in the change in the tectonic stress regime (after 8 Ma) and the onset of surface uplift (after 7 Ma) imply that deep-seated process(es) caused post-7 Ma uplift. The geometry of lithospheric slabs beneath the plateau margin, Pliocene to recent alkaline volcanism, and the uplift pattern with accompanying normal faulting point toward slab tearing and localized heating at the base of the lithosphere as a probable mechanism for post-7 Ma uplift of the southwest margin. Considering previous work in the region, there appears to be an important link between slab dynamics and surface uplift throughout the Anatolian Plateau\’s southern margin.}, language = {en} } @article{SchildgenCosentinoBookhagenetal.2012, author = {Schildgen, Taylor F. and Cosentino, D. and Bookhagen, Bodo and Niedermann, Samuel and Yildirim, C. and Echtler, Helmut Peter and Wittmann, Hella and Strecker, Manfred}, title = {Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey a record of tectonic and upper mantle processes}, series = {Earth \& planetary science letters}, volume = {317}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.12.003}, pages = {85 -- 95}, year = {2012}, abstract = {Uplifted Neogene marine sediments and Quaternary fluvial terraces in the Mut Basin, southern Turkey, reveal a detailed history of surface uplift along the southern margin of the Central Anatolian plateau from the Late Miocene to the present. New surface exposure ages (Be-10, Al-26, and Ne-21) of gravels capping fluvial strath terraces located between 28 and 135 m above the Goksu River in the Mut Basin yield ages ranging from ca. 25 to 130 ka, corresponding to an average incision rate of 0.52 to 0.67 mm/yr. Published biostratigraphic data combined with new interpretations of the fossil assemblages from uplifted marine sediments reveal average uplift rates of 0.25 to 0.37 mm/yr since Late Miocene time (starting between 8 and 5.45 Ma), and 0.72 to 0.74 mm/yr after 1.66 to 1.62 Ma. Together with the terrace abandonment ages, the data imply 0.6 to 0.7 mm/yr uplift rates from 1.6 Ma to the present. The different post-Late Miocene and post-1.6 Ma uplift rates can imply increasing uplift rates through time, or multi-phased uplift with slow uplift or subsidence in between. Longitudinal profiles of rivers in the upper catchment of the Mut and Ermenek basins show no apparent lithologic or fault control on some knickpoints that occur at 1.2 to 1.5 km elevation, implying a transient response to a change in uplift rates. Projections of graded upper relict channel segments to the modern outlet, together with constraints from uplifted marine sediments, show that a slower incision/uplift rate of 0.1 to 0.2 mm/yr preceded the 0.7 mm/yr uplift rate. The river morphology and profile projections therefore reflect multi-phased uplift of the plateau margin, rather than steadily increasing uplift rates. Multi-phased uplift can be explained by lithospheric slab break-off and possibly also the arrival of the Eratosthenes Seamount at the collision zone south of Cyprus.}, language = {en} } @article{ScheweLevermannCheng2012, author = {Schewe, Jacob and Levermann, Anders and Cheng, Hai}, title = {A critical humidity threshold for monsoon transitions}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {8}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-8-535-2012}, pages = {535 -- 544}, year = {2012}, abstract = {Monsoon systems around the world are governed by the so-called moisture-advection feedback. Here we show that, in a minimal conceptual model, this feedback implies a critical threshold with respect to the atmospheric specific humidity q(o) over the ocean adjacent to the monsoon region. If q(o) falls short of this critical value q(o)(c), monsoon rainfall over land cannot be sustained. Such a case could occur if evaporation from the ocean was reduced, e.g. due to low sea surface temperatures. Within the restrictions of the conceptual model, we estimate q(o)(c) from present-day reanalysis data for four major monsoon systems, and demonstrate how this concept can help understand abrupt variations in monsoon strength on orbital timescales as found in proxy records.}, language = {en} } @article{ScherlerStrecker2012, author = {Scherler, Dirk and Strecker, Manfred}, title = {Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images}, series = {Journal of glaciology}, volume = {58}, journal = {Journal of glaciology}, number = {209}, publisher = {International Glaciological Society}, address = {Cambridge}, issn = {0022-1430}, doi = {10.3189/2012JoG11J096}, pages = {569 -- 580}, year = {2012}, abstract = {Despite global warming and unlike their Himalayan neighbours, glaciers in the Karakoram mountains do not show signs of significant retreat. Here we report high velocity variations of Biafo Glacier, central Karakoram, which occurred between 2001 and 2009 and which indicate considerable dynamics in its flow behaviour. We have generated a dense time series of glacier surface velocities, based on cross-correlation of optical satellite images, which clearly shows seasonal and interannual velocity variations, reaching 50\% in some places. The interannual velocity variations resemble the passing of a broad wave of high velocities, with peak velocities during 2005 and some diffusion down-glacier over a period of at least 4 years. High interannual velocity variations are also observed at other glaciers in the vicinity, suggesting a common cause, although these appear to partly comprise longer acceleration phases. Analysis of weather station data provides some indications of meteorological conditions that could have promoted sustained sliding events during this period, but this does not explain the wave-like nature of the acceleration at Biafo Glacier, and the regular, protracted velocity changes.}, language = {en} } @article{SauerGlombitzaKallmeyer2012, author = {Sauer, Patrick and Glombitza, Clemens and Kallmeyer, Jens}, title = {A system for incubations at high gas partial pressure}, series = {Frontiers in microbiology}, volume = {3}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2012.00025}, pages = {9}, year = {2012}, abstract = {High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120 degrees C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custommade parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid-gas-rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90 degrees C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample.}, language = {en} } @article{SalazarFrancesKommaetal.2012, author = {Salazar, S. and Frances, F. and Komma, J. and Blume, Theresa and Francke, Till and Bronstert, Axel and Bl{\"o}schl, G{\"u}nter}, title = {A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions}, series = {Natural hazards and earth system sciences}, volume = {12}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-12-3287-2012}, pages = {3287 -- 3306}, year = {2012}, abstract = {In this paper, we analyse the effectiveness of flood management measures based on the concept known as "retaining water in the landscape". The investigated measures include afforestation, micro-ponds and small-reservoirs. A comparative and model-based methodological approach has been developed and applied for three meso-scale catchments located in different European hydro-climatological regions: Poyo (184 km(2)) in the Spanish Mediterranean, Upper Iller (954 km(2)) in the German Alps and Kamp (621 km(2)) in Northeast-Austria representing the Continental hydro-climate. This comparative analysis has found general similarities in spite of the particular differences among studied areas. In general terms, the flood reduction through the concept of "retaining water in the landscape" depends on the following factors: the storage capacity increase in the catchment resulting from such measures, the characteristics of the rainfall event, the antecedent soil moisture condition and the spatial distribution of such flood management measures in the catchment. In general, our study has shown that, this concept is effective for small and medium events, but almost negligible for the largest and less frequent floods: this holds true for all different hydro-climatic regions, and with different land-use, soils and morphological settings.}, language = {en} } @article{SakiMoazzenOberhaensli2012, author = {Saki, Adel and Moazzen, Mohssen and Oberh{\"a}nsli, Roland}, title = {Mineral chemistry and thermobarometry of the staurolite-chloritoid schists from Poshtuk, NW Iran}, series = {Geological magazine}, volume = {149}, journal = {Geological magazine}, number = {6}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0016-7568}, doi = {10.1017/S0016756812000209}, pages = {1077 -- 1088}, year = {2012}, abstract = {The Poshtuk metapelitic rocks in northwestern Iran underwent two main phases of regional and contact metamorphism. Microstructures, textural features and field relations indicate that these rocks underwent a polymetamorphic history. The dominant metamorphic assemblage of the metapelites is garnet, staurolite, chloritoid, chlorite, muscovite and quartz, which grew mainly syntectonically during the later contact metamorphic event. Peak metamorphic conditions of this event took place at 580 degrees C and similar to 3-4 kbar, indicating that this event occurred under high-temperature and low-pressure conditions (HT/LP metamorphism), which reflects the high heat flow in this part of the crust. This event is mainly controlled by advective heat input through magmatic intrusions into all levels of the crust. These extensive Eocene metamorphic and magmatic activities can be associated with the early Alpine Orogeny, which resulted in this area from the convergence between the Arabian and Eurasian plates, and the Cenozoic closure of the Tethys oceanic tract(s).}, language = {en} } @article{RudolphEsserCarminatietal.2012, author = {Rudolph, Nicole and Esser, Hanna G. and Carminati, Andrea and Moradi, Ahmad B. and Hilger, Andre and Kardjilov, Nikolay and Nagl, Stefan and Oswald, Sascha}, title = {Dynamic oxygen mapping in the root zone by fluorescence dye imaging combined with neutron radiography}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {12}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-011-0407-7}, pages = {63 -- 74}, year = {2012}, abstract = {The rooted zone of a soil, more precisely the rhizosphere, is a very dynamic system. Some of the key processes are water uptake and root respiration. We have developed a novel method for measuring the real-time distribution of water and oxygen concentration in the rhizosphere as a biogeochemical interface in soil. This enables understanding where and when roots are active in respect to root respiration and water uptake and how the soil responds to it. We used glass containers (15 x 15 x 1 cm), which were filled with a quartz sand mixture. Sensor foils for fluorescence dye imaging of O-2 were installed on the inner side of the containers. A lupine plant was grown in each container for 2 weeks under controlled conditions. Then we took time series of fluorescence images for time-lapsed visualization of oxygen depletion caused by root respiration. Changing water content was mapped in parallel by non-invasive neutron radiography, which yields water content distributions in high spatial resolution. Also it can detect the root system of the lupine plants. By this combined imaging of the samples, a range of water contents and different oxygen concentration levels, both induced by root activities, could be assessed. We monitored the dynamics of these vital parameters induced by roots during a period of several hours. We observed that for high water saturation, the oxygen concentration decreased in parts of the container. The accompanying neutron radiographies gave us the information that these locations are spatially correlated to roots. Therefore, it can be concluded that the observed oxygen deficits close to the roots result from root respiration and show up while re-aeration from atmosphere by gas phase transport is restricted by the high water saturation. Our coupled imaging setup was able to monitor the spatial distribution and temporal dynamics of oxygen and water content in a night and day cycle. This reflects complex plant activities such as photosynthesis, transpiration, and metabolic activities impacting the root-soil interface. Our experimental setup provides the possibility to non-invasively visualize these parameters with high resolution. The particular oxygen imaging method as well as the combination with simultaneously mapping the water content by neutron radiography is a novelty.}, language = {en} } @article{RoyKallmeyerAdhikarietal.2012, author = {Roy, Hans and Kallmeyer, Jens and Adhikari, Rishi Ram and Pockalny, Robert and Jorgensen, Bo Barker and D'Hondt, Steven}, title = {Aerobic microbial respiration in 86-million-year-old deep-sea red clay}, series = {Science}, volume = {336}, journal = {Science}, number = {6083}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1219424}, pages = {922 -- 925}, year = {2012}, abstract = {Microbial communities can subsist at depth in marine sediments without fresh supply of organic matter for millions of years. At threshold sedimentation rates of 1 millimeter per 1000 years, the low rates of microbial community metabolism in the North Pacific Gyre allow sediments to remain oxygenated tens of meters below the sea floor. We found that the oxygen respiration rates dropped from 10 micromoles of O-2 liter(-1) year(-1) near the sediment-water interface to 0.001 micromoles of O-2 liter(-1) year(-1) at 30-meter depth within 86 million-year-old sediment. The cell-specific respiration rate decreased with depth but stabilized at around 10(-3) femtomoles of O-2 cell(-1) day(-1) 10 meters below the seafloor. This result indicated that the community size is controlled by the rate of carbon oxidation and thereby by the low available energy flux.}, language = {en} } @article{RomeroVianaKienelSachse2012, author = {Romero-Viana, Lidia and Kienel, Ulrike and Sachse, Dirk}, title = {Lipid biomarker signatures in a hypersaline lake on Isabel Island (Eastern Pacific) as a proxy for past rainfall anomaly (1942-2006 AD)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {350}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {18}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.06.011}, pages = {49 -- 61}, year = {2012}, abstract = {Isabel Lake is a hypersaline crater-lake on Isabel Island, Mexico, situated in the eastern tropical Pacific, an area highly sensitive to hydrological changes. Today, annual rainfall mostly occurs during the wet season, from June to October, when the northern edge of the Intertropical Convergence Zone (ITCZ) extends over the island. In order to evaluate the potential of sedimentary lipid biomarker signatures as a proxy of past hydro-climatic variability we have performed a calibration analysis comparing changes in biomarker distribution in the upper 16 cm of the sediment core with a regional instrumental data set. Annual laminations present in the sediment sequence allow for precise chronological control (1942-2006), More than 80 different lipid compounds were identified in the sediment and could be assigned to three major groups of source organisms: (1) algal populations; (2) a mixed community of ciliates, bacteria and cyanobacteria; and (3) photosynthetic sulfur bacteria. We found that the observed changes in the. relative contribution of the different lipid biomarkers to the sediment record were determined by the regional rainfall variability over the last 65 years. The planktonic community of Isabel Lake was highly sensitive to salinity fluctuations related to rainfall variability; seasonal precipitation results in freshwater input into the lake, driving an annual algal bloom and a relative decrease in the abundance of the more halotolerant populations of (cyano) bacteria and ciliates. Consequently, the concentration ratio between the two most abundant biomarkers in the Isabel Lake sediments, n-alkyl diols and tetrahymanol (which we define as the DiTe index), representing algal and ciliate planktonic populations, respectively, was significantly correlated with the seasonal rainfall anomaly (r = 0.68, p < 0.01). We propose that the DiTe index is a proxy of changes in the aquatic ecosystem of Isabel Lake and, by extension, regional hydrological changes in a sensitive climatic area of the eastern tropical Pacific.}, language = {en} } @article{RohrmannKappCarrapaetal.2012, author = {Rohrmann, Alexander and Kapp, Paul and Carrapa, Barbara and Reiners, Peter W. and Guynn, Jerome and Ding, Lin and Heizler, Matthew}, title = {Thermochronologic evidence for plateau formation in central Tibet by 45 Ma}, series = {Geology}, volume = {40}, journal = {Geology}, number = {2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G32530.1}, pages = {187 -- 190}, year = {2012}, abstract = {The timing of Tibetan plateau development remains elusive, despite its importance for evaluating models of continental lithosphere deformation and associated changes in surface elevation and climate. We present new thermochronologic data [biotite and K-feldspar Ar-40/Ar-39, apatite fission track, and apatite (U-Th)/He] from the central Tibetan plateau (Lhasa and Qiangtang terranes). The data indicate that over large regions, rocks underwent rapid to moderate cooling and exhumation during Cretaceous to Eocene time. This was coeval with >50\% upper crustal shortening, suggesting substantial crustal thickening and surface elevation gain. Thermal modeling of combined thermochronometers requires exhumation of most samples to depths of <3 km between 85 and 45 Ma, followed by a decrease in erosional exhumation rate to low values of <0.05 mm/yr. The thermochronological results, when interpreted in the context of the deformation and paleoaltimetric history, are best explained by a scenario of plateau growth that began locally in central Tibet during the Late Cretaceous and expanded to encompass most of central Tibet by 45 Ma.}, language = {en} } @article{RieckhGerkeSommer2012, author = {Rieckh, Helene and Gerke, Horst H. and Sommer, Michael}, title = {Hydraulic properties of characteristic horizons depending on relief position and structure in a hummocky glacial soil landscape}, series = {Soil \& tillage research : an international journal on research and development in soil tillage and field traffic, and their relationships with soil environment, land use and crop production}, volume = {125}, journal = {Soil \& tillage research : an international journal on research and development in soil tillage and field traffic, and their relationships with soil environment, land use and crop production}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-1987}, doi = {10.1016/j.still.2012.07.004}, pages = {123 -- 131}, year = {2012}, abstract = {The hummocky ground moraine soil landscape forms a spatial continuum of more or less eroded and depositional soils developed from glacial till under intensive agricultural cultivation. Measurements of soil hydraulic properties in the laboratory on soil cores are mostly limited to some characteristic horizons. However, these horizons can vary in thickness or structural and pedological development depending on relief position. This paper compares soil hydraulic properties of the same soil horizons sampled at different relief positions in a single field representing various degrees of soil erosion/deposition. Water retention curves were determined from undisturbed core samples using sand and kaolin beds with hanging water column and pressure chambers, and the unsaturated hydraulic conductivity using the double-membrane apparatus. Data were fitted to the van Genuchten-Mualem function (VGM) using the nonlinear curve fitting program RETC. The desorption water retention curves for the soil horizons were different and depended on the soil structural development that could be related with the intensity of erosion history at each landscape position. The greatest differences in hydraulic functions were found for the E, Bt, and C horizons. The fitted soil water retention curves reflected these differences mainly in the values of the VGM curve parameters n and theta(s). The landscape features that have the strongest differentiating effect are related to erosion and distance towards the water table. The results can help improving pedotransfer approaches for the estimation of spatially distributed hydraulic parameters for modelling the water movement in hummocky soil landscapes as basis for establishing landscape scale water and element balances.}, language = {en} } @article{ReicheFunkZhangetal.2012, author = {Reiche, Matthias and Funk, Roger and Zhang, Zhuodong and Hoffmann, Carsten and Reiche, Johannes and Wehrhan, Marc and Li, Yong and Sommer, Michael}, title = {Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China}, series = {Grassland science}, volume = {58}, journal = {Grassland science}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1744-6961}, doi = {10.1111/j.1744-697X.2011.00235.x}, pages = {8 -- 19}, year = {2012}, abstract = {Intensive grazing leads to land degradation and desertification of grassland ecosystems followed by serious environmental and social problems. The Xilingol steppe grassland in Inner Mongolia, China, which has been a sink area for dust for centuries, is strongly affected by the negative effects of overgrazing and wind erosion. The aim of this study is the provision of a wind erosion risk map with a spatial high resolution of 25 m to identify actual source and sink areas. In an integrative approach, field measurements of vegetation features and surface roughness length z0 were combined with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image data for a land use classification. To determine the characteristics of the different land use classes, a field observation (ground truth) was performed in April 2009. The correlation of vegetation height and z0 (R2 = 0.8, n = 55) provided the basis for a separation of three main classes, grassland, non-vegetation and other. The integration of the soil-adjusted vegetation index (SAVI) and the spectral information from the atmospheric corrected ASTER bands 1, 2 and 3 (visible to near-infrared) led to a classification of the overall accuracy (OA) of 0.79 with a kappa () statistic of 0.74, respectively. Additionally, a digital elevation model (DEM) was used to identify topographical effects in relation to the main wind direction, which enabled a qualitative estimation of potential dust deposition areas. The generated maps result in a significantly higher description of the spatial variability in the Xilingol steppe grassland reflecting the different land use intensities on the current state of the grassland less, moderately and highly degraded. The wind erosion risk map enables the identification of characteristic mineral dust sources, sinks and transition zones.}, language = {en} } @article{PrahlRybskiKroppetal.2012, author = {Prahl, Boris F. and Rybski, Diego and Kropp, J{\"u}rgen and Burghoff, Olaf and Held, Hermann}, title = {Applying stochastic small-scale damage functions to German winter storms}, series = {Geophysical research letters}, volume = {39}, journal = {Geophysical research letters}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2012GL050961}, pages = {6}, year = {2012}, abstract = {Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes. Citation: Prahl, B. F., D. Rybski, J. P. Kropp, O. Burghoff, and H. Held (2012), Applying stochastic small-scale damage functions to German winter storms, Geophys. Res. Lett., 39, L06806, doi: 10.1029/2012GL050961.}, language = {en} } @article{PetruninRiosecoSobolevetal.2012, author = {Petrunin, Alexey G. and Rioseco, Ernesto Meneses and Sobolev, Stephan Vladimir and Weber, Michael H.}, title = {Thermomechanical model reconciles contradictory geophysical observations at the Dead Sea Basin}, series = {Geochemistry, geophysics, geosystems}, volume = {13}, journal = {Geochemistry, geophysics, geosystems}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2011GC003929}, pages = {15}, year = {2012}, abstract = {The Dead Sea Transform (DST) comprises a boundary between the African and Arabian plates. During the last 15-20 m.y. more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Widespread igneous activity since some 20 Ma ago and especially in the last 5 m.y., thin (60-80 km) lithosphere constrained by seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow values of less than 50-60 mW/m(2) and deep seismicity in the lower crust (deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what we call the "DST heat-flow paradox," we have developed a numerical model that assumes an erosion of initially thick and cold lithosphere just before or during the active faulting at the DST. The optimal initial conditions for the model are defined using transient thermal analysis. From the results of our numerical experiments we conclude that the entire set of observations for the DSB can be explained within the classical pull-apart model assuming that the lithosphere has been thermally eroded at about 20 Ma and the uppermost mantle in the region have relatively weak rheology consistent with experimental data for wet olivine or pyroxenite.}, language = {en} } @article{PestryakovaHerzschuhWetterichetal.2012, author = {Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike and Wetterich, Sebastian and Ulrich, Mathias}, title = {Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {51}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2012.06.020}, pages = {56 -- 70}, year = {2012}, abstract = {Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling.}, language = {en} } @article{PesicekEngdahlThurberetal.2012, author = {Pesicek, J. D. and Engdahl, E. R. and Thurber, C. H. and DeShon, H. R. and Lange, Dietrich}, title = {Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40 degrees S), Chile}, series = {Geophysical journal international}, volume = {191}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05624.x}, pages = {317 -- 324}, year = {2012}, abstract = {We present a new tomographic model of the mantle in the area of the 2010 M8.8 Maule earthquake and surrounding regions. Increased ray coverage provided by the aftershock data allows us to image the detailed subducting slab structure in the mantle, from the region of flat slab subduction north of the Maule rupture to the area of overlapping rupture between the 1960 M9.5 and the 2010 M8.8 events to the south. We have combined teleseismic primary and depth phase arrivals with available local arrivals to better constrain the teleseismic earthquake locations in the region, which we use to conduct nested regionalglobal tomography. The new model reveals the detailed structure of the flat slab and its transition to a more moderately dipping slab in the Maule region. South of the Maule region, a steeply dipping relic slab is imaged from similar to 200 to 1000 km depth that is distinct from the moderately dipping slab above it and from the more northerly slab at similar depths. We interpret the images as revealing both horizontal and vertical tearing of the slab at similar to 38 degrees S to explain the imaged pattern of slab anomalies in the southern portion of the model. In contrast, the transition from a horizontal to moderately subducting slab in the northern portion of the model is imaged as a continuous slab bend. We speculate that the tearing was most likely facilitated by a fracture zone in the downgoing plate or alternatively by a continental scale terrane boundary in the overriding plate.}, language = {en} } @article{PaschkeStillerRybergetal.2012, author = {Paschke, Marco and Stiller, Manfred and Ryberg, Trond and Weber, Michael H.}, title = {The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {DESIRE Grp}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05270.x}, pages = {524 -- 534}, year = {2012}, abstract = {As a part of the DEad Sea Integrated REsearch (DESIRE) project a near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST with a total displacement of 107 km since about 18 Ma is part of a left-lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a distance of about 1100 km. The seismic experiment comprises 972 source locations and 1045 receiver locations. Each source was recorded by similar to 180 active receivers and a field data set with 175 000 traces was created. From this data set, 124 444 P-wave first-break traveltimes have been picked. With these traveltimes a tomographic inversion was carried out, resulting in a 2-D P-wave velocity model with a rms error of 20.9 ms. This model is dominated by a low-velocity region associated with the DSB. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high-velocity zone. A further feature is an unexpected laterally low-velocity zone with P-velocities of 3 km s1 embedded in regions with 4 km s1 in the shallow part on the west side of the DSB. Another observation is an anticlinal structure west of the DSB interpretated to the related Syrian arc fold belt.}, language = {en} } @article{PaascheTronickeDietrich2012, author = {Paasche, Hendrik and Tronicke, Jens and Dietrich, Peter}, title = {Zonal cooperative inversion of partially co-located data sets constrained by structural a priori information}, series = {Near surface geophysics}, volume = {10}, journal = {Near surface geophysics}, number = {2}, publisher = {European Association of Geoscientists \& Engineers}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2011033}, pages = {103 -- 116}, year = {2012}, abstract = {In many near-surface geophysical studies it is now common practice to collect co-located disparate geophysical data sets to explore subsurface structures. Reconstruction of physical parameter distributions underlying the available geophysical data sets usually requires the use of tomographic reconstruction techniques. To improve the quality of the obtained models, the information content of all data sets should be considered during the model generation process, e.g., by employing joint or cooperative inversion approaches. Here, we extend the zonal cooperative inversion methodology based on fuzzy c-means cluster analysis and conventional single-input data set inversion algorithms for the cooperative inversion of data sets with partially co-located model areas. This is done by considering recent developments in fuzzy c-means cluster analysis. Additionally, we show how supplementary a priori information can be incorporated in an automated fashion into the zonal cooperative inversion approach to further constrain the inversion. The only requirement is that this a priori information can be expressed numerically; e.g., by physical parameters or indicator variables. We demonstrate the applicability of the modified zonal cooperative inversion approach using synthetic and field data examples. In these examples, we cooperatively invert S- and P-wave traveltime data sets with partially co-located model areas using water saturation information expressed by indicator variables as additional a priori information. The approach results in a zoned multi-parameter model, which is consistent with all available information given to the zonal cooperative inversion and outlines the major subsurface units. In our field example, we further compare the obtained zonal model to sparsely available borehole and direct-push logs. This comparison provides further confidence in our zonal cooperative inversion model because the borehole and direct-push logs indicate a similar zonation.}, language = {en} } @article{OverduinWestermannYoshikawaetal.2012, author = {Overduin, Pier Paul and Westermann, Sebastian and Yoshikawa, Kenji and Haberlau, Thomas and Romanovsky, Vladimir E. and Wetterich, Sebastian}, title = {Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea)}, series = {Journal of geophysical research : Earth surface}, volume = {117}, journal = {Journal of geophysical research : Earth surface}, number = {14}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2011JF002088}, pages = {9}, year = {2012}, abstract = {Submarine permafrost degradation rates may be determined by a number of interacting processes, including rates of sea level rise and coastal erosion, sea bottom temperature and salinity regimes, geothermal heat flux and heat and mass diffusion within the sediment column. Observations of ice-bearing permafrost in shelf sediments are necessary in order to determine its spatial distribution and to quantify its degradation rate. We tested the use of direct current electrical resistivity to ice-bearing permafrost in Elson Lagoon northeast of Barrow, Alaska (Beaufort Sea). A sharp increase in electrical resistivity was observed in profiles collected perpendicular to and along the coastline and is interpreted to be the boundary between ice-free sediment and underlying ice-bearing submarine permafrost. The depth to the interpreted ice-bearing permafrost increases from <2 m below sea level to over 12 m below sea level with increasing distance from the coastline. The dependence of the saline sediment electrical resistivity on temperature and freezing was measured in the laboratory to provide validation for the field measurements. Electrical resistivity was shown to be effective for detection of shallow ice-bearing permafrost in the coastal zone. Historical coastal retreat rates were combined with the inclination of the top of the ice-bearing permafrost to calculate mean vertical permafrost degradation rates of 1 to 4 cm yr(-1).}, language = {en} }