@article{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and dewilt, P. and Dicldnson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and Reyes, R. de Los and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Flux upper limits for 47 AGN observed with HESS in 2004-2011}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {564}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322897}, pages = {10}, year = {2014}, abstract = {Context. About 40\% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E > 100 GeV) sources and constraining the physical processes at play in potential emitters. Aims. H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their gamma-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Methods. Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. Results. For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 objects Taking into account the attenuation by the extragalactic background light reduces the tension for all but two of them, suggesting intrinsic curvature in the high-energy spectra of these two AGN. Conclusions. Compilation efforts led by current VHE instruments are of critical importance for target-selection strategies before the advent of the Cherenkov Telescope Array (CTA).}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {TeV gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with HESS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu459}, pages = {790 -- 799}, year = {2014}, abstract = {The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) gamma-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE gamma-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H. E. S. S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant gamma-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Gamma = 2.5 were set at 5.6 x 10(-1)3 cm(-2) s(-1) above 0.26 TeV and 3.2 x 10(-12) cm(-2) s(-1) above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B-G1.9 greater than or similar to 12 mu G for G1.9+0.3 and to B-G330 greater than or similar to 8 mu G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.}, language = {en} } @misc{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {HESS J1640-465 - an exceptionally luminous TeV gamma-ray supernova remnant (vol 439, pg 2828, 2014)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu826}, pages = {3640 -- 3642}, year = {2014}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and dewilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {562}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322914}, pages = {10}, year = {2014}, abstract = {Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and gamma-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G15.4+0.1 performed with the High Energy Stereoscopic System (H. E. S. S.) and XMM-Newton. A compact TeV gamma-ray source, HESS J1818-154, located in the center and contained within the shell of G15.4+0.1 is detected by H. E. S. S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 +/- 0.3(stat) +/- 0.2(sys) and an integral flux of F(>0.42 TeV) = (0.9 +/- 0.3(stat) +/- 0.2(sys)) x 10(-12) cm(-2) s(-1). Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE gamma-ray emission provide strong evidence of a PWN located inside the shell of G15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and gamma-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G15.4+0.1.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fussling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and Reyes, R. de los and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Malyshev, D.}, title = {Search for extended gamma-ray emission around AGN with HESS and Fermi-LAT}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {562}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322510}, pages = {10}, year = {2014}, abstract = {Context. Very-high-energy (VHE; E > 100 GeV) gamma-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these gamma-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially- beamed source or a magnetically- broadened cascade :aux. Aims. Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, IRS 0229+200, and PKS 2155-304 were searched for using VHE y-ray data taken with the High Energy Stereoscopic System (HESS.) and high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray data with the Fermi Large Area Telescope (LAT). Methods. By comparing the angular distributions of the reconstructed gamma-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results. Upper limits on the extended emission around lES 1101-232, lES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGME) values, >10(-12) G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs. EGMF strengths in the range (0.3-3) x 10(-15) G were excluded for PKS 2155-304 at the 99\% confidence level, under the assumption of a 1 Mpc coherence length.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and F{\"u}ßling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Markus and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and Reyes, R. de los and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Acero, F. and Casandjian, J. M. and Cohen-Tanugi, J. and Giordano, F. and Guillemot, L. and Lande, J. and Pletsch, H. and Uchiyama, Y.}, title = {Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {574}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration, Fermi-LAT Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322694}, pages = {10}, year = {2015}, abstract = {Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, Uli and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, Tanja and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reichardt, I. and Reimer, A. and Reimer, Olaf and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, Christopher and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Wrnlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Finke, J. and Fortin, P. and Horan, D.}, title = {The high-energy gamma-ray emission of AP Librae}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {573}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321436}, pages = {7}, year = {2015}, abstract = {The gamma-ray spectrum of the low-frequency-peaked BL Lac (LBL) object AP Librae is studied, following the discovery of very-high-energy (VHE; E > 100 GeV) gamma-ray emission up to the TeV range by the H.E.S.S. experiment. Thismakes AP Librae one of the few VHE emitters of the LBL type. The measured spectrum yields a flux of (8.8 +/- 1.5(stat) +/- 1.8(sys)) x 10(-12) cm(-2) s(-1) above 130 GeV and a spectral index of Gamma = 2.65 +/- 0.19(stat) +/- 0.20(sys). This study also makes use of Fermi-LAT observations in the high energy (HE, E > 100 MeV) range, providing the longest continuous light curve (5 years) ever published on this source. The source underwent a flaring event between MJD 56 306-56 376 in the HE range, with a flux increase of a factor of 3.5 in the 14 day bin light curve and no significant variation in spectral shape with respect to the low-flux state. While the H.E.S.S. and (low state) Fermi-LAT fluxes are in good agreement where they overlap, a spectral curvature between the steep VHE spectrum and the Fermi-LAT spectrum is observed. The maximum of the gamma-ray emission in the spectral energy distribution is located below the GeV energy range.}, language = {en} } @article{AbramowskiAceroAkhperjanianetal.2013, author = {Abramowski, Attila and Acero, F. and Akhperjanian, A. G. and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Behera, B. and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chaves, Ryan C. G. and Cheesebrough, A. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O\&rsquo and C., and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fussling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goering, D. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Hampf, D. and Harris, J. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu and Kosack, K. and Kossakowski, R. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nguyen, N. and Niemiec, J. and Nolan, S. J. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Pelat, D.}, title = {Discovery of TeV gamma-ray emission from PKS 0447-439 and derivation of an upper limit on its redshift}, series = {ASTRONOMY \& ASTROPHYSICS}, volume = {552}, journal = {ASTRONOMY \& ASTROPHYSICS}, number = {4}, publisher = {EDP SCIENCES S A}, address = {LES ULIS CEDEX A}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321108}, pages = {14}, year = {2013}, abstract = {Very high-energy gamma-ray emission from PKS 0447-439 was detected with the H. E. S. S. Cherenkov telescope array in December 2009. This blazar is one of the brightest extragalactic objects in the Fermi bright source list and has a hard spectrum in the MeV to GeV range. In the TeV range, a photon index of 3.89 +/- 0.37 (stat) +/- 0.22 (sys) and a flux normalisation at 1 TeV, phi(1) (TeV) = (3.5 +/- 1.1(stat) +/- 0.9(sys)) x 10(-13) cm(-2) s(-1) TeV-1 were found. The detection with H. E. S. S. triggered observations in the X-ray band with the Swift and RXTE telescopes. Simultaneous UV and optical data from Swift UVOT and data from the optical telescopes ATOM and ROTSE are also available. The spectrum and light curve measured with H. E. S. S. are presented and compared to the multi-wavelength data at lower energies. A rapid flare is seen in the Swift XRT and RXTE data, together with a flux variation in the UV band, at a time scale of the order of one day. A firm upper limit of z < 0.59 on the redshift of PKS 0447-439 is derived from the combined Fermi-LAT and H. E. S. S. data, given the assumptions that there is no upturn in the intrinsic spectrum above the Fermi-LAT energy range and that absorption on the extragalactic background light (EBL) is not weaker than the lower limit provided by current models. The spectral energy distribution is well described by a simple one-zone synchrotron self-Compton scenario, if the redshift of the source is less than z less than or similar to 0.4.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Goering, D. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J-P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C-C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Nedbal, D. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P-O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spiess, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J-P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H-S.}, title = {Constraints on axionlike particles with HESS from the irregularity of the PKS 2155-304 energy spectrum}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {88}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {10}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {1550-7998}, doi = {10.1103/PhysRevD.88.102003}, pages = {12}, year = {2013}, abstract = {Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H. E. S. S. observations of the distant BL Lac object PKS 2155 - 304 (z = 0.116) are used to derive upper limits at the 95\% C. L. on the strength of the ALP coupling to photons, g(gamma a) < 2.1 x 10(-11) GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic field.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O\&rsquo and C., and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Nedbal, D. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Discovery of very high energy gamma-ray emission from the BL Lacertae object PKS0301-243 with HESS}, series = {ASTRONOMY \& ASTROPHYSICS}, volume = {559}, journal = {ASTRONOMY \& ASTROPHYSICS}, publisher = {EDP SCIENCES S A}, address = {LES ULIS CEDEX A}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321639}, pages = {11}, year = {2013}, abstract = {The active galactic nucleus PKS 0301-243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV < E < 100 GeV) by Fermi/LAT. This paper reports on the discovery of PKS 0301-243 at very high energies (E > 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4 sigma. A hint of variability at the 2.5 sigma level is found. An integral flux I(E > 200GeV) = (3.3 +/- 1.1(stat) +/- 0.7(syst)) x 10(-12) ph cm(-2) s(-1) and a photon index Gamma = 4.6 +/- 0.7(stat) +/- 0.2(syst) are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301-243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.}, language = {en} } @article{AbramowskiAceroAharonianetal.2015, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Clapson, A. C. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, Krzysztof and Katz, Uli and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, Manuel and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, Christopher and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2}, series = {Monthly notices of the Royal Astronomical Society}, volume = {446}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu2148}, pages = {1163 -- 1169}, year = {2015}, language = {en} } @article{AbramowskiAceroAharonianetal.2012, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balzer, Arnim and Barnacka, Anna and de Almeida, U. Barres and Becherini, Yvonne and Becker, J. and Behera, B. and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Buesching, I. and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Charbonnier, A. and Chaves, Ryan C. G. and Cheesebrough, A. and Clapson, A. C. and Coignet, G. and Cologna, Gabriele and Conrad, Jan and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gallant, Y. A. and Gast, H. and Gerard, L. and Gerbig, D. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goret, P. and Goering, D. and Haeffner, S. and Hague, J. D. and Hampf, D. and Hauser, M. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hoffmann, A. and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and de Jager, O. C. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Keogh, D. and Khangulyan, D. and Khelifi, B. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Komin, Nu. and Kosack, K. and Kossakowski, R. and Laffon, H. and Lamanna, G. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, D. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Moderski, R. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nekrassov, D. and Nguyen, N. and Nicholas, B. and Niemiec, J. and Nolan, S. J. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Arribas, M. Paz and Pedaletti, G. and Pelletier, G. and Petrucci, P. -O. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raue, M. and Rayner, S. M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Ruppel, J. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schoeck, F. M. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Vialle, J. P. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Bastieri, D. and Becerra Gonzalez, J. and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Tridon, D. Borla and Braun, I. and Bretz, T. and Canellas, A. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Cossio, L. and Covino, S. and Dazzi, F. and De Angelis, A. and De Cea del Pozo, E. and De Lotto, B. and Delgado Mendez, C. and Diago Ortega, A. and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido, D. and Giavitto, G. and Godinovic, N. and Hadasch, D. and Haefner, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Huber, B. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Krause, J. and La Barbera, A. and Lelas, D. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Makariev, M. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Munar, P. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paneque, D. and Paoletti, R. and Pardo, S. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Perez-Torres, M. A. and Persic, M. and Peruzzo, L. and Pilia, M. and Pochon, J. and Prada, F. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reichardt, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Suric, T. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thom, M. and Tibolla, O. and Torres, D. F. and Treves, A. and Vankov, H. and Vogler, P. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hui, C. M. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and LeBohec, S. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Williams, D. A. and Zitzer, B. and de Almeida, U. Barres and Cara, M. and Casadio, C. and Cheung, C. C. and McConville, W. and Davies, F. and Doi, A. and Giovannini, G. and Giroletti, M. and Hada, K. and Hardee, P. and Harris, D. E. and Junor, W. and Kino, M. and Lee, N. P. and Ly, C. and Madrid, J. and Massaro, F. and Mundell, C. G. and Nagai, H. and Perlman, E. S. and Steele, I. A. and Walker, R. C. and Wood, D. L.}, title = {The 2010 very high energy gamma-ray flare and 10 years ofmulti-wavelength oservations of M 87}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {746}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {HESS Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/746/2/151}, pages = {18}, year = {2012}, abstract = {The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chaves, Ryan C. G. and Cheesebrough, A. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goering, D. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Hampf, D. and Harris, J. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu and Kosack, K. and Kossakowski, R. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nguyen, N. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Willmann, P. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {HESS observations of the binary system PSR B1259-63/LS 2883 around the 2010/2011 periastron passage}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {551}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220612}, pages = {7}, year = {2013}, abstract = {Aims. We present very high energy (VHE; E > 100 GeV) data from the gamma-ray binary system PSR B1259-63/LS 2883 taken around its periastron passage on 15th of December 2010 with the High Energy Stereoscopic System (H. E. S. S.) of Cherenkov Telescopes. We aim to search for a possible TeV counterpart of the GeV flare detected by the Fermi LAT. In addition, we aim to study the current periastron passage in the context of previous observations taken at similar orbital phases, testing the repetitive behaviour of the source. Methods. Observations at VHEs were conducted with H.E.S.S. from 9th to 16th of January 2011. The total dataset amounts to similar to 6 h of observing time. The data taken around the 2004 periastron passage were also re-analysed with the current analysis techniques in order to extend the energy spectrum above 3 TeV to fully compare observation results from 2004 and 2011. Results. The source is detected in the 2011 data at a significance level of 11.5 sigma revealing an averaged integral flux above 1 TeV of (1.01 +/- 0.18(stat) +/- 0.20(sys)) x 10(-12) cm(-2) s(-1). The differential energy spectrum follows a power-law shape with a spectral index Gamma = 2.92 +/- 0.30(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of N-0 = (1.95 +/- 0.32(stat) +/- 0.39(sys)) x 10(-12) TeV-1 cm(-2) s(-1). The measured light curve does not show any evidence for variability of the source on the daily scale. The re-analysis of the 2004 data yields results compatible with the published ones. The differential energy spectrum measured up to similar to 10 TeV is consistent with a power law with a spectral index Gamma = 2.81 +/- 0.10(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of N-0 = (1.29 +/- 0.08(stat) +/- 0.26(sys)) x 10(-12) TeV-1 cm(-2) s(-1). Conclusions. The measured integral flux and the spectral shape of the 2011 data are compatible with the results obtained around previous periastron passages. The absence of variability in the H.E.S.S. data indicates that the GeV flare observed by Fermi LAT in the time period covered also by H.E.S.S. observations originates in a different physical scenario than the TeV emission. Moreover, the comparison of the new results to the results from the 2004 observations made at a similar orbital phase provides a stronger evidence of the repetitive behaviour of the source.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chaves, Ryan C. G. and Cheesebrough, A. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fussling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goering, D. and Grondin, M. -H. and Haeffner, S. and Hague, J. D. and Hahn, J. and Hampf, D. and Harris, J. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Komin, Nu and Kosack, K. and Kossakowski, R. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nekrassov, D. and Nguyen, N. and Niemiec, J. and Nolan, S. J. and Ohm, S. and Awilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S.}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {4}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.041301}, pages = {6}, year = {2013}, abstract = {Gamma-ray line signatures can be expected in the very-high-energy (E-gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical gamma-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H. E. S. S. gamma-ray instrument, upper limits on linelike emission are obtained in the energy range between similar to 500 GeV and similar to 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic gamma-ray line emission, flux limits of (2 x 10(-7)-2 x 10(-5)) m(-2)s(-1)sr(-1) and (1 x 10(-8)- 2 x 10(-6)) m(-2)s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity- averaged DM annihilation cross section (chi chi ->gamma gamma) reach similar to 10(-27)cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile. DOI: 10.1103/PhysRevLett.110.041301}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chaves, Ryan C. G. and Cheesebrough, A. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O\&rsquo and C., and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goering, D. and Grondin, M-H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Hampf, D. and Harris, J. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Kossakowski, R. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J-P and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C-C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nguyen, N. and Niemiec, J. and Nolan, S. J. and Ohm, S. and de Ona Wilhelmi, E. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P-O and Peyaud, B. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J-P and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H-S}, title = {Search for very-high-energy gamma-ray emission from Galactic globular clusters with HESS}, series = {ASTRONOMY \& ASTROPHYSICS}, volume = {551}, journal = {ASTRONOMY \& ASTROPHYSICS}, publisher = {EDP SCIENCES S A}, address = {LES ULIS CEDEX A}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220719}, pages = {8}, year = {2013}, abstract = {Context. Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters\’ cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. These stellar clusters could also constitute a new class of sources in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. Aims. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with the H. E. S. S. array of imaging atmospheric Cherenkov telescopes. Methods. We searched for point-like and extended VHE gamma-ray emission from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE gamma-ray signal from the direction of Terzan 5, we calculated the expected gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. Results. We did not detect significant VHE gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC6388 and NGC7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic scaling model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Behera, B. and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chaves, Ryan C. G. and Cheesebrough, A. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foester, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goeing, D. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Hampf, D. and Harris, J. and Hauser, M. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Komin, Nu. and Kosack, K. and Kossakowski, R. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Masbou, J. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nguyen, N. and Niemiec, J. and Nolan, S. J. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. S.}, title = {HESS discovery of VHE gamma-rays from the quasar PKS 1510-089}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {554}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {6}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321135}, pages = {7}, year = {2013}, abstract = {The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H. E. S. S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0TeV) = (1.0 +/- 0.2(stat) +/- 0.2(sys)) x 10(-11) cm(-2) s(-1) is measured. The best-fit power law to the VHE data has a photon index of G = 5.4 +/- 0.7(stat) +/- 0.3(sys). The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured gamma-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of gamma - gamma absorption on the internal optical to UV photon field.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Goering, D. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, Markus and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Nedbal, D. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spiess, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Discovery of high and very high-energy emission from the BL Lacertae object SHBL J001355.9-185406}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {554}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESSCollaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220996}, pages = {8}, year = {2013}, abstract = {The detection of the high-frequency peaked BL Lac object (HBL) SHBL J001355.9-185406 (z = 0.095) at high (HE; 100 MeV < E < 300 GeV) and very high-energy (VHE; E > 100 GeV) with the Fermi Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) is reported. Dedicated observations were performed with the H. E. S. S. telescopes, leading to a detection at the 5.5 sigma significance level. The measured flux above 310 GeV is (8.3 +/- 1.7(stat) +/- 1.7(sys)) x 10(-13) photons cm(-2) s(-1) (about 0.6\% of that of the Crab Nebula), and the power-law spectrum has a photon index of Gamma = 3.4 +/- 0.5(stat) +/- 0.2(sys). Using 3.5 years of publicly available Fermi-LAT data, a faint counterpart has been detected in the LAT data at the 5.5 sigma significance level, with an integrated flux above 300 MeV of (9.3 +/- 3.4(stat) +/- 0.8(sys)) x 10(-10) photons cm(-2) s(-1) and a photon index of Gamma = 1.96 +/- 0.20(stat) +/- 0.08(sys). X-ray observations with Swift-XRT allow the synchrotron peak energy in vF(v) representation to be located at similar to 1.0 keV. The broadband spectral energy distribution is modelled with a one-zone synchrotron self-Compton (SSC) model and the optical data by a black-body emission describing the thermal emission of the host galaxy. The derived parameters are typical of HBLs detected at VHE, with a particle-dominated jet.}, language = {en} } @article{AbramowskiAceroAharonianetal.2013, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Gast, H. and Giebels, B. and Glicenstein, J. F. and Goering, D. and Grondin, M-H. and Grudzinska, M. and Haeffner, S. and Hague, J. D. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemoine-Goumard, M. and Lenain, J-P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C-C. and Marandon, V. and Marcowith, Alexandre and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Nedbal, D. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P-O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spiess, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J-P. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H-S. and Perkins, J. S. and Ojha, R. and Stevens, J. and Edwards, P. G. and Kadler, M.}, title = {HESS and Fermi-LAT discovery of gamma-rays from the blazar 1ES 1312-423}, series = {Monthly notices of the Royal Astronomical Society}, volume = {434}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stt1081}, pages = {1889 -- 1901}, year = {2013}, abstract = {A deep observation campaign carried out by the High Energy Stereoscopic System (HESS) on Centaurus A enabled the discovery of gamma-rays from the blazar 1ES 1312-423, 2 degrees away from the radio galaxy. With a differential flux at 1 TeV of phi(1 TeV) = (1.9 +/- 0.6(stat) +/- 0.4(sys)) x 10(-13) cm(-2) s(-1) TeV-1 corresponding to 0.5 per cent of the Crab nebula differential flux and a spectral index Gamma = 2.9 +/- 0.5(stat) +/- 0.2(sys), 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E > 100 GeV) extragalactic sky. A careful analysis using three and a half years of Fermi Large Area Telescope (Fermi-LAT) data allows the discovery at high energies (E > 100 MeV) of a hard spectrum (Gamma = 1.4 +/- 0.4(stat) +/- 0.2(sys)) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. The emission is successfully fitted with a synchrotron self-Compton model for the non-thermal component, combined with a blackbody spectrum for the optical emission from the host galaxy.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2018, author = {Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Anguener, E. O. and Backes, M. and Balzer, A. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Birsin, E. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Bulik, T. and Carr, J. and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Chretien, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Haeffner, S. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, J. A. and Hofmann, W. and Hofverberg, P. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lorentz, M. and Lu, C. -C. and Lui, R. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, I. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and Valerius, K. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Weidinger, M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Zywucka, N.}, title = {Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526545}, pages = {7}, year = {2018}, abstract = {Aims. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy gamma-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV gamma-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at E-cut = (3.5 +/- 1.2(stat)) TeV and a spectral index of Gamma approximate to 1.6 +/- 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to similar to 0.1\% of the initial kinetic energy of a Type Ia supernova explosion (10(51) erg). When using a hadronic model, a magnetic field of B approximate to 100 mu G is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Gamma(p) approximate to 1.7 would be required, which implies that similar to 7 x 10(49)/n(cm-3) erg has been transferred into high-energy protons with the effective density n(cm-3) = n/1 cm(-3). This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm(-3).}, language = {en} } @misc{AbramovaWagnerOltetal.2022, author = {Abramova, Olga and Wagner, Amina and Olt, Christian M. and Buxmann, Peter}, title = {One for all, all for one}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {1867-5808}, doi = {10.25932/publishup-60585}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605856}, pages = {18}, year = {2022}, abstract = {We propose a conceptual model of acceptance of contact tracing apps based on the privacy calculus perspective. Moving beyond the duality of personal benefits and privacy risks, we theorize that users hold social considerations (i.e., social benefits and risks) that underlie their acceptance decisions. To test our propositions, we chose the context of COVID-19 contact tracing apps and conducted a qualitative pre-study and longitudinal quantitative main study with 589 participants from Germany and Switzerland. Our findings confirm the prominence of individual privacy calculus in explaining intention to use and actual behavior. While privacy risks are a significant determinant of intention to use, social risks (operationalized as fear of mass surveillance) have a notably stronger impact. Our mediation analysis suggests that social risks represent the underlying mechanism behind the observed negative link between individual privacy risks and contact tracing apps' acceptance. Furthermore, we find a substantial intention-behavior gap.}, language = {en} } @article{AbramovaWagnerOltetal.2022, author = {Abramova, Olga and Wagner, Amina and Olt, Christian M. and Buxmann, Peter}, title = {One for all, all for one}, series = {International Journal of Information Management}, volume = {64}, journal = {International Journal of Information Management}, publisher = {Elsevier}, address = {Kidlington}, issn = {0268-4012}, doi = {10.1016/j.ijinfomgt.2022.102473}, pages = {1 -- 16}, year = {2022}, abstract = {We propose a conceptual model of acceptance of contact tracing apps based on the privacy calculus perspective. Moving beyond the duality of personal benefits and privacy risks, we theorize that users hold social considerations (i.e., social benefits and risks) that underlie their acceptance decisions. To test our propositions, we chose the context of COVID-19 contact tracing apps and conducted a qualitative pre-study and longitudinal quantitative main study with 589 participants from Germany and Switzerland. Our findings confirm the prominence of individual privacy calculus in explaining intention to use and actual behavior. While privacy risks are a significant determinant of intention to use, social risks (operationalized as fear of mass surveillance) have a notably stronger impact. Our mediation analysis suggests that social risks represent the underlying mechanism behind the observed negative link between individual privacy risks and contact tracing apps' acceptance. Furthermore, we find a substantial intention-behavior gap.}, language = {en} } @inproceedings{AbramovaGundlachBilda2021, author = {Abramova, Olga and Gundlach, Jana and Bilda, Juliane}, title = {Understanding the role of newsfeed clutter in stereotype activation}, series = {PACIS 2021 proceedings}, booktitle = {PACIS 2021 proceedings}, number = {473}, publisher = {AIS Electronic Library (AISeL)}, address = {[Erscheinungsort nicht ermittelbar]}, isbn = {978-1-7336325-7-7}, year = {2021}, abstract = {Despite the phenomenal growth of Big Data Analytics in the last few years, little research is done to explicate the relationship between Big Data Analytics Capability (BDAC) and indirect strategic value derived from such digital capabilities. We attempt to address this gap by proposing a conceptual model of the BDAC - Innovation relationship using dynamic capability theory. The work expands on BDAC business value research and extends the nominal research done on BDAC - innovation. We focus on BDAC's relationship with different innovation objects, namely product, business process, and business model innovation, impacting all value chain activities. The insights gained will stimulate academic and practitioner interest in explicating strategic value generated from BDAC and serve as a framework for future research on the subject}, language = {en} } @inproceedings{AbramovaGladkayaKrasnova2021, author = {Abramova, Olga and Gladkaya, Margarita and Krasnova, Hanna}, title = {An unusual encounter with oneself}, series = {ICIS 2021: IS and the future of work}, booktitle = {ICIS 2021: IS and the future of work}, publisher = {AIS Electronic Library (AISeL)}, address = {[Erscheinungsort nicht ermittelbar]}, year = {2021}, abstract = {Helping overcome distance, the use of videoconferencing tools has surged during the pandemic. To shed light on the consequences of videoconferencing at work, this study takes a granular look at the implications of the self-view feature for meeting outcomes. Building on self-awareness research and self-regulation theory, we argue that by heightening the state of self-awareness, self-view engagement depletes participants' mental resources and thereby can undermine online meeting outcomes. Evaluation of our theoretical model on a sample of 179 employees reveals a nuanced picture. Self-view engagement while speaking and while listening is positively associated with self-awareness, which, in turn, is negatively associated with satisfaction with meeting process, perceived productivity, and meeting enjoyment. The criticality of the communication role is put forward: looking at self while listening to other attendees has a negative direct and indirect effect on meeting outcomes; however, looking at self while speaking produces equivocal effects.}, language = {en} } @article{AbramovaGladkayaKrasnova2024, author = {Abramova, Olga and Gladkaya, Margarita and Krasnova, Hanna}, title = {The differential effects of self-view in virtual meetings when speaking vs. listening}, series = {European journal of information systems}, journal = {European journal of information systems}, publisher = {Taylor \& Francis}, address = {London}, issn = {0960-085X}, doi = {10.1080/0960085X.2024.2325350}, pages = {1 -- 19}, year = {2024}, abstract = {With the surging reliance on videoconferencing tools, users may find themselves staring at their reflections for hours a day. We refer to this phenomenon as self-referential information (SRI) consumption and examine its consequences and the mechanism behind them. Building on self-awareness research and the strength model of self-control, we argue that SRI consumption heightens the state of self-awareness and thereby depletes participants' mental resources, eventually undermining virtual meeting (VM) outcomes. Our findings from a European employee sample revealed contrary effects of SRI consumption across speaker vs listener roles. Engagement with self-view is positively associated with self-awareness, which, in turn, is negatively related to satisfaction with VM process, perceived productivity, and enjoyment. Looking at the self while listening to others exhibits adverse direct and indirect (via self-awareness) effects on VM outcomes. However, looking at the self when speaking exhibits positive direct effects on satisfaction with VM process and enjoyment.}, language = {en} } @article{AbramovaGladkaya2024, author = {Abramova, Olga and Gladkaya, Margarita}, title = {Behind videoconferencing fatigue at work}, series = {Business \& information systems engineering}, journal = {Business \& information systems engineering}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, issn = {2363-7005}, doi = {10.1007/s12599-024-00874-7}, pages = {19}, year = {2024}, abstract = {A remarkable peculiarity of videoconferencing (VC) applications - the self-view - a.k.a. digital mirror, is examined as a potential reason behind the voiced exhaustion among users. This work draws on technostress research and objective self-awareness theory and proposes the communication role (sender vs. receiver) as an interaction variable. We report the results of two studies among European employees (n1 = 176, n2 = 253) with a one-year time lag. A higher frequency of self-view in a VC when receiving a message, i.e., listening to others, indirectly increases negative affect (study 1 \& 2) and exhaustion (study 2) via the increased state of public self-awareness. Self-viewing in the role of message sender, e.g., as an online presenter, also increases public self-awareness, but its overall effects are less harmful. As for individual differences, users predisposed to public self-consciousness were more concerned with how other VC participants perceived them. Gender effects were insignificant.}, language = {en} } @article{AbramovaBatzelModesti2022, author = {Abramova, Olga and Batzel, Katharina and Modesti, Daniela}, title = {Collective response to the health crisis among German Twitter users}, series = {International Journal of Information Management Data Insights}, volume = {2}, journal = {International Journal of Information Management Data Insights}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2667-0968}, doi = {10.1016/j.jjimei.2022.100126}, pages = {13}, year = {2022}, abstract = {We used structural topic modeling to analyze over 800,000 German tweets about COVID-19 to answer the questions: What patterns emerge in tweets as a response to a health crisis? And how do topics discussed change over time? The study leans on the goals associated with the health information seeking (GAINS) model, discerning whether a post aims at tackling and eliminating the problem (i.e., problem-focused) or managing the emotions (i.e., emotion-focused); whether it strives to maximize positive outcomes (promotion focus) or to minimize negative outcomes (prevention focus). The findings indicate four clusters salient in public reactions: 1) "Understanding" (problem-promotion); 2) "Action planning" (problem-prevention); 3) "Hope" (emotion-promotion) and 4) "Reassurance" (emotion-prevention). Public communication is volatile over time, and a shift is evidenced from self-centered to community-centered topics within 4.5 weeks. Our study illustrates social media text mining's potential to quickly and efficiently extract public opinions and reactions. Monitoring fears and trending topics enable policymakers to rapidly respond to deviant behavior, like resistive attitudes toward containment measures or deteriorating physical health. Healthcare workers can use the insights to provide mental health services for battling anxiety or extensive loneliness from staying home.}, language = {en} } @inproceedings{AbramovaBatzelModesti2022, author = {Abramova, Olga and Batzel, Katharina and Modesti, Daniela}, title = {Coping and regulatory responses on social media during health crisis}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, publisher = {HICSS Conference Office University of Hawaii at Manoa}, address = {Honolulu}, isbn = {978-0-9981331-5-7}, pages = {10}, year = {2022}, abstract = {During a crisis event, social media enables two-way communication and many-to-many information broadcasting, browsing others' posts, publishing own content, and public commenting. These records can deliver valuable insights to approach problematic situations effectively. Our study explores how social media communication can be analyzed to understand the responses to health crises better. Results based on nearly 800 K tweets indicate that the coping and regulation foci framework holds good explanatory power, with four clusters salient in public reactions: 1) "Understanding" (problem-promotion); 2) "Action planning" (problem-prevention); 3) "Hope" (emotion-promotion) and 4) "Reassurance" (emotion-prevention). Second, the inter-temporal analysis shows high volatility of topic proportions and a shift from self-centered to community-centered topics during the course of the event. The insights are beneficial for research on crisis management and practicians who are interested in large-scale monitoring of their audience for well-informed decision-making.}, language = {en} } @article{Abramova2022, author = {Abramova, Olga}, title = {No matter what the name, we're all the same?}, series = {Electronic markets}, volume = {32}, journal = {Electronic markets}, publisher = {Springer}, address = {Heidelberg}, issn = {1019-6781}, doi = {10.1007/s12525-021-00505-z}, pages = {1419 -- 1446}, year = {2022}, abstract = {Sharing marketplaces emerged as the new Holy Grail of value creation by enabling exchanges between strangers. Identity reveal, encouraged by platforms, cuts both ways: While inducing pre-transaction confidence, it is suspected of backfiring on the information senders with its discriminative potential. This study employs a discrete choice experiment to explore the role of names as signifiers of discriminative peculiarities and the importance of accompanying cues in peer choices of a ridesharing offer. We quantify users' preferences for quality signals in monetary terms and evidence comparative disadvantage of Middle Eastern descent male names for drivers and co-travelers. It translates into a lower willingness to accept and pay for an offer. Market simulations confirm the robustness of the findings. Further, we discover that females are choosier and include more signifiers of involuntary personal attributes in their decision-making. Price discounts and positive information only partly compensate for the initial disadvantage, and identity concealment is perceived negatively.}, language = {en} } @misc{Abramova2022, author = {Abramova, Olga}, title = {No matter what the name, we're all the same?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {1867-5808}, doi = {10.25932/publishup-60064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-600641}, pages = {30}, year = {2022}, abstract = {Sharing marketplaces emerged as the new Holy Grail of value creation by enabling exchanges between strangers. Identity reveal, encouraged by platforms, cuts both ways: While inducing pre-transaction confidence, it is suspected of backfiring on the information senders with its discriminative potential. This study employs a discrete choice experiment to explore the role of names as signifiers of discriminative peculiarities and the importance of accompanying cues in peer choices of a ridesharing offer. We quantify users' preferences for quality signals in monetary terms and evidence comparative disadvantage of Middle Eastern descent male names for drivers and co-travelers. It translates into a lower willingness to accept and pay for an offer. Market simulations confirm the robustness of the findings. Further, we discover that females are choosier and include more signifiers of involuntary personal attributes in their decision-making. Price discounts and positive information only partly compensate for the initial disadvantage, and identity concealment is perceived negatively.}, language = {en} } @inproceedings{Abramova2020, author = {Abramova, Olga}, title = {Does a smile open all doors?}, series = {Proceedings of the 53rd Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 53rd Hawaii International Conference on System Sciences}, publisher = {HICSS Conference Office University of Hawaii at Manoa}, address = {Honolulu}, isbn = {978-0-9981331-3-3}, pages = {831 -- 840}, year = {2020}, abstract = {Online photographs govern an individual's choices across a variety of contexts. In sharing arrangements, facial appearance has been shown to affect the desire to collaborate, interest to explore a listing, and even willingness to pay for a stay. Because of the ubiquity of online images and their influence on social attitudes, it seems crucial to be able to control these aspects. The present study examines the effect of different photographic self-disclosures on the provider's perceptions and willingness to accept a potential co-sharer. The findings from our experiment in the accommodation-sharing context suggest social attraction mediates the effect of photographic self-disclosures on willingness to host. Implications of the results for IS research and practitioners are discussed.}, language = {en} } @book{AbrahamssonBaddooMargariaetal.2007, author = {Abrahamsson, Pekka and Baddoo, Nathan and Margaria, Tiziana and Messnarz, Richard}, title = {Software Process Improvement : 14th europea conference, EuroSpi 2007, Potsdam, Germany, September 26-28, 2007 ; Proceedings}, series = {Lecture Notes in Computer Science}, volume = {4764}, journal = {Lecture Notes in Computer Science}, publisher = {Springer}, address = {Berlin}, pages = {223 S.}, year = {2007}, language = {en} } @article{AbrahamczykLozadaGobilardAckermannetal.2017, author = {Abrahamczyk, Stefan and Lozada Gobilard, Sissi Donna and Ackermann, Markus and Fischer, Eberhard and Krieger, Vera and Redling, Almut and Weigend, Maximilian}, title = {A question of data quality-Testing pollination syndromes in Balsaminaceae}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0186125}, pages = {14}, year = {2017}, abstract = {Pollination syndromes and their predictive power regarding actual plant-animal interactions have been controversially discussed in the past. We investigate pollination syndromes in Balsaminaceae, utilizing quantitative respectively categorical data sets of flower morphometry, signal and reward traits for 86 species to test for the effect of different types of data on the test patterns retrieved. Cluster Analyses of the floral traits are used in combination with independent pollinator observations. Based on quantitative data we retrieve seven clusters, six of them corresponding to plausible pollination syndromes and one additional, well-supported cluster comprising highly divergent floral architectures. This latter cluster represents a non-syndrome of flowers not segregated by the specific data set here used. Conversely, using categorical data we obtained only a rudimentary resolution of pollination syndromes, in line with several earlier studies. The results underscore that the use of functional, exactly quanitified trait data has the power to retrieve pollination syndromes circumscribed by the specific data used. Data quality can, however, not be replaced by sheer data volume. With this caveat, it is possible to identify pollination syndromes from large datasets and to reliably extrapolate them for taxa for which direct observations are unavailable.}, language = {en} } @article{Abraham2003, author = {Abraham, Klaus}, title = {Minimal Inflammation, Acute Phase Response and Avoidance of Misclassification of Vitamin A and Iron Status in Infants-Importance of a High-Sensitivity C-Reactive Protein (CRP) Assay}, year = {2003}, language = {en} } @article{AbrahamKraheDominicetal.2002, author = {Abraham, Charles and Krah{\´e}, Barbara and Dominic, Robert and Fritsche, Immo}, title = {Do health promotion messages target cognitive and behavioural correlates of condom use? : a content analysis of safer sex promotion leaflets in two countries}, issn = {1359-107X}, year = {2002}, language = {en} } @article{AbrahamGruss2010, author = {Abraham, Andreas and Gruss, Michael}, title = {Stress inoculation facilitates active avoidance learning of the semi-precocial rodent Octodon degus}, issn = {0166-4328}, doi = {10.1016/j.bbr.2010.05.018}, year = {2010}, abstract = {A growing body of evidence highlights the impact of the early social environment for the adequate development of brain and behavior in animals and humans. Disturbances of this environment were found to be both maladaptive and adaptive to emotional and cognitive function. Using the semi-precocial, biparental rodent Octodon degus, we aimed to examine (i) the impact of age (juvenile/adult), sex (male/female), and (ii) "motivation" to solve the task (by applying increasing foot-shock-intensities) on two-way active avoidance (TWA) learning in socially reared degus, and (iii) whether early life stress inoculation by 1 h daily parental separation during the first three weeks of life has maladaptive or adaptive consequences on cognitive function as measured by TWA learning. Our results showed that (i) juvenile degus, unlike altricial rats of the same age, can successfully learn the TWA task comparable to adults, and (ii) that learning performance improves with increasing "task motivation", irrespective of age and sex. Furthermore, we revealed that (iii) stress inoculation improves avoidance learning, particularly in juvenile males, quantitatively and qualitatively depending on "task motivation". In conclusion, the present study describes for the first time associative learning in O. degus and its modulation by early life stress experience as an animal model to study the underlying mechanisms of learning and memory in the stressed and unstressed brain. Although, stress is commonly viewed as being maladaptive, our data indicate that early life stress inoculation triggers developmental cascades of adaptive functioning, which may improve cognitive and emotional processing of stressors later in life.}, language = {en} } @article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael J.}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors experiments and modeling}, series = {Physica status solidi : A, Applications and materials science}, volume = {209}, journal = {Physica status solidi : A, Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieSchildeTaubert2018, author = {Abouserie, Ahed and Schilde, Uwe and Taubert, Andreas}, title = {The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {233}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {4}, publisher = {de Gruyter}, address = {Berlin und M{\"u}nchen}, issn = {2194-4946}, doi = {10.1515/NCRS-2018-0099}, pages = {743 -- 746}, year = {2018}, abstract = {C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) {\AA}, b = 9.3486(3) {\AA}, c = 14.1168(8) {\AA}, β = 102.288(5)°, V = 1245.97(11) {\AA}³, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K.}, language = {en} } @misc{AbouserieSchildeTaubert2018, author = {Abouserie, Ahed and Schilde, Uwe and Taubert, Andreas}, title = {The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417310}, pages = {4}, year = {2018}, abstract = {C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) {\AA}, b = 9.3486(3) {\AA}, c = 14.1168(8) {\AA}, β = 102.288(5)°, V = 1245.97(11) {\AA}³, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K.}, language = {en} } @phdthesis{Abouserie2018, author = {Abouserie, Ahed}, title = {Ionic liquid precursors for multicomponent inorganic nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418950}, school = {Universit{\"a}t Potsdam}, pages = {xx, 193}, year = {2018}, abstract = {Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.}, language = {en} } @article{AbonKneisCrisologoetal.2016, author = {Abon, Catherine Cristobal and Kneis, David and Crisologo, Irene and Bronstert, Axel and David, Carlos Primo Constantino and Heistermann, Maik}, title = {Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines}, series = {GEOMATICS NATURAL HAZARDS \& RISK}, volume = {7}, journal = {GEOMATICS NATURAL HAZARDS \& RISK}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2015.1058862}, pages = {1390 -- 1405}, year = {2016}, abstract = {This case study evaluates the suitability of radar-based quantitative precipitation estimates (QPEs) for the simulation of streamflow in the Marikina River Basin (MRB), the Philippines. Hourly radar-based QPEs were produced from reflectivity that had been observed by an S-band radar located about 90 km from the MRB. Radar data processing and precipitation estimation were carried out using the open source library wradlib. To assess the added value of the radar-based QPE, we used spatially interpolated rain gauge observations (gauge-only (GO) product) as a benchmark. Rain gauge observations were also used to quantify rainfall estimation errors at the point scale. At the point scale, the radar-based QPE outperformed the GO product in 2012, while for 2013, the performance was similar. For both periods, estimation errors substantially increased from daily to the hourly accumulation intervals. Despite this fact, both rainfall estimation methods allowed for a good representation of observed streamflow when used to force a hydrological simulation model of the MRB. Furthermore, the results of the hydrological simulation were consistent with rainfall verification at the point scale: the radar-based QPE performed better than the GO product in 2012, and equivalently in 2013. Altogether, we could demonstrate that, in terms of streamflow simulation, the radar-based QPE can perform as good as or even better than the GO product - even for a basin such as the MRB which has a comparatively dense rain gauge network. This suggests good prospects for using radar-based QPE to simulate and forecast streamflow in other parts of the Philippines where rain gauge networks are not as dense.}, language = {en} } @phdthesis{Abon2015, author = {Abon, Catherine Cristobal}, title = {Radar-based rainfall retrieval for flood forecasting in a meso-scale catchment}, school = {Universit{\"a}t Potsdam}, pages = {93 S.}, year = {2015}, language = {en} } @article{AbiusoHolubecAndersetal.2022, author = {Abiuso, Paolo and Holubec, Viktor and Anders, Janet and Ye, Zhuolin and Cerisola, Federico and Perarnau-Llobet, Marti}, title = {Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems}, series = {Journal of physics communications}, volume = {6}, journal = {Journal of physics communications}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2399-6528}, doi = {10.1088/2399-6528/ac72f8}, pages = {15}, year = {2022}, abstract = {We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brantseg, T. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gunawardhana, Isuru and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Williams, D. A. and Zitzer, B. and Jorstad, Svetlana G. and Marscher, Alan P. and Lister, Matthew L. and Kovalev, Yuri Y. and Pushkarev, A. B. and Savolainen, Tuomas and Agudo, I. and Molina, S. N. and Gomez, J. L. and Larionov, Valeri M. and Borman, G. A. and Mokrushina, A. A. and Tornikoski, Merja and Lahteenmaki, A. and Chamani, W. and Enestam, S. and Kiehlmann, S. and Hovatta, Talvikki and Smith, P. S. and Pontrelli, P.}, title = {Multiwavelength Observations of the Blazar BL Lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab35c}, pages = {14}, year = {2018}, abstract = {Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL. Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL. Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of similar to 2.3 hr and a decay time of similar to 36 min. The peak flux above 200 GeV is (4.2 +/- 0.6) x 10(-6) photon m(-2) s(-1) measured with a 4-minute-binned light curve, corresponding to similar to 180\% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Errando, Manel and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Park, N. and Perkins, Jeremy S. and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B. and Vurm, Indrek and Beloborodov, Andrei}, title = {A Strong Limit on the Very-high-energy Emission from GRB 150323A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab371}, pages = {6}, year = {2018}, abstract = {On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1\% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only similar to 2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to similar to 50\% at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below similar to 100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A greater than or similar to 3 x 10(11) g . cm(-1), consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2019, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buchovecky, M. and Calderon-Madera, D. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Giuri, C. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Oliver and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Nievas-Rosillo, M. and Ong, R. A. and Pfrang, Konstantin Johannes and Pohl, Martin and Prado, R. R. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Ribeiro, D. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Svraka, T. and Weinstein, A. and Wells, R. M. and Wilcox, Patrick and Wilhelm, Alina and Williams, David Arnold and Williamson, T. J. and Zitzer, B.}, title = {Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4817}, pages = {8}, year = {2019}, abstract = {The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the universe?s history. Spectral measurements of blazars at very high energies (>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56?56 ?m, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.}, language = {en} }