@misc{JafarnezhadgeroAmirzadehFatollahietal.2022, author = {Jafarnezhadgero, Amir Ali and Amirzadeh, Nasrin and Fatollahi, Amir and Siahkouhian, Marefat and de Souza Castelo Oliveira, Anderson and Granacher, Urs}, title = {Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55756}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557567}, pages = {1 -- 10}, year = {2022}, abstract = {Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.}, language = {en} } @misc{HortobagyiLesinskiFernandez‐del‐Olmoetal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {627}, issn = {1866-8364}, doi = {10.25932/publishup-43199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431993}, pages = {23}, year = {2015}, abstract = {Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @misc{SchaeferBittmann2018, author = {Schaefer, Laura and Bittmann, Frank}, title = {Coherent behavior of neuromuscular oscillations between isometrically interacting subjects}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {480}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419864}, pages = {10}, year = {2018}, abstract = {Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not considered yet during muscular interaction of two human subjects. The purpose of this study is to investigate the myofascial oscillations intra- and interpersonally. For this the mechanical muscle oscillations of the triceps and the abdominal external oblique muscles were measured by MMG and the triceps tendon was measured by mechanotendography (MTG) during isometric interaction of two subjects (n = 20) performed at 80\% of the MVC using their arm extensors. The coherence of MMG/MTG-signals was analyzed with coherence wavelet transform and was compared with randomly matched signal pairs. Each signal pairing shows significant coherent behavior. Averagely, the coherent phases of n = 485 real pairings last over 82 ± 39 \% of the total duration time of the isometric interaction. Coherent phases of randomly matched signal pairs take 21 ± 12 \% of the total duration time (n = 39). The difference between real vs. randomly matched pairs is significant (U = 113.0, p = 0.000, r = 0.73). The results show that the neuromuscular system seems to be able to synchronize to another neuromuscular system during muscular interaction and generate a coherent behavior of the mechanical muscular oscillations. Potential explanatory approaches are discussed.}, language = {en} } @phdthesis{Pacholsky2003, author = {Pacholsky, Dirk}, title = {Zell-Zell- und Zell-Matrix-Kontakte w{\"a}hrend der Muskelentwicklung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001161}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Im Rahmen dieser Arbeit wurden zwei humane Varianten des von Wang et al., 1999, erstmals beschriebenen muskelspezifischen Proteins Xin (Huhn und Maus) {\"u}ber Sequenzanalyse, Immunofluoreszenzmikroskopie, Transfektionsstudien und biochemischer Analyse n{\"a}her charakterisiert. Die Proteine wurden mit human Xin related proteins 1 und 2 - hXirp1 und 2 -bezeichnet. Die Xin-Proteine enthielten bisher unbekannte, sowie spezifische, repetitive Motive, die aus jeweils mindestens 16 Aminos{\"a}uren bestanden. Ihre Aminos{\"a}uresequenz, mit einer Vielzahl weiterer putativer Motivsequenzen, verwies auf eine potentielle Funktion von hXirp als Adapterprotein in Muskelzellen. Das hier n{\"a}her untersuchte hXirp1 lokalisierte an den Zell-Matrix-Verbindungen der Muskel-Sehnen-{\"U}bergangszone im Skelettmuskel, sowie an den Zell-Zell-Verbindungen der Glanzstreifen im Herzmuskel. W{\"a}hrend der Muskelentwicklung zeigte hXirp1 eine sehr fr{\"u}he Expression, zusammen mit einer pr{\"a}gnanten Lokalisation an den Pr{\"a}myofibrillen und deren Verankerungsstrukturen, die auf eine Funktion des Proteins in der Myofibrillogenese deuten. Ektopische Expressionen von hXirp1 in einer Vielzahl von Nichtmuskel-Kulturzellen zeigten wiederum eine Lokalisation des Proteins an den Zell-Matrix-Kontakten dieser Zellen. Am Beispiel von hXirp1 und 2 wurde stellvertretend f{\"u}r die Familie der Xin-Proteine gezeigt, daß es sich bei den repetitiven Motiven um neuartige, F-Aktin bindende Sequenzmotive handelte. Die Xin-Proteine k{\"o}nnen somit als muskelspezifische, aktinbindende, potentielle Adapterproteine bezeichnet werden, denen eine strukturelle und funktionelle Beteiligung an der Verankerung der Myofibrillen im adulten Muskel, wie auch w{\"a}hrend der Myofibrillogenese zukommt.}, language = {de} }