@article{BurgemeisterGvaramadzeStringfellowetal.2013, author = {Burgemeister, S. and Gvaramadze, Visily V. and Stringfellow, G. S. and Kniazev, Alexei Y. and Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells}, series = {Monthly notices of the Royal Astronomical Society}, volume = {429}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sts588}, pages = {3305 -- 3315}, year = {2013}, abstract = {Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR 120bb and WR 120bc. In this paper, we present and analyse new near-IR, J-, H- and K-band spectra using the Potsdam Wolf-Rayet model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus Arm, WR 120bb and WR 120bc appear highly reddened, A(Ks) approximate to 2 mag. We adopt a common distance of 5.8 kpc to both stars, which complies with the typical absolute K-band magnitude for the WN9h subtype of -6.5 mag, is consistent with their observed extinction based on comparison with other massive stars in the region, and allows for the possibility that their shells are interacting with each other. This leads to luminosities of log(L/L-circle dot) = 5.66 and 5.54 for WR 120bb and WR 120bc, with large uncertainties due to the adopted distance. The values of the luminosities of WR 120bb and WR 120bc imply that the immediate precursors of both stars were red supergiants (RSG). This implies in turn that the circumstellar shells associated with WR 120bb and WR 120bc were formed by interaction between the WR wind and the dense material shed during the preceding RSG phase.}, language = {en} } @misc{GvaramadzeKniazevMiroshnichenkoetal.2012, author = {Gvaramadze, V. V. and Kniazev, A. Y. and Miroshnichenko, A. S. and Berdnikov, Leonid N. and Langer, N. and Stringfellow, G. S. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Grebel, E. K. and Buckley, D. and Crause, L. and Crawford, S. and Gulbis, A. and Hettlage, C. and Hooper, E. and Husser, T. -O. and Kotze, P. and Loaring, N. and Nordsieck, K. H. and O'Donoghue, D. and Pickering, T. and Potter, S. and Colmenero, E. Romero and Vaisanen, P. and Williams, T. and Wolf, M. and Reichart, D. E. and Ivarsen, K. M. and Haislip, J. B. and Nysewander, M. C. and LaCluyze, A. P.}, title = {Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer}, series = {Monthly notices of the Royal Astronomical Society}, volume = {421}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.20556.x}, pages = {3325 -- 3337}, year = {2012}, abstract = {We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status.}, language = {en} }