@article{BelliFelisattiFischer2021, author = {Belli, Francesco and Felisatti, Arianna and Fischer, Martin H.}, title = {"BreaThink"}, series = {Experimental brain research}, volume = {239}, journal = {Experimental brain research}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-021-06147-z}, pages = {2489 -- 2499}, year = {2021}, abstract = {Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states.}, language = {en} } @article{MiklashevskyLindemannFischer2021, author = {Miklashevsky, Alex and Lindemann, Oliver and Fischer, Martin H.}, title = {The force of numbers}, series = {Frontiers in human neuroscience / Frontiers Research Foundation}, volume = {14}, journal = {Frontiers in human neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.590508}, pages = {16}, year = {2021}, abstract = {The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {A biological foundation for spatial-numerical associations}, series = {Annals of the New York Academy of Sciences}, volume = {1477}, journal = {Annals of the New York Academy of Sciences}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0077-8923}, doi = {10.1111/nyas.14418}, pages = {44 -- 53}, year = {2020}, abstract = {"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.}, language = {en} } @article{FischerShaki2018, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Repeating Numbers Reduces Results: Violations of the Identity Axiom in Mental Arithmetic}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.02453}, pages = {9}, year = {2018}, abstract = {Even simple mental arithmetic is fraught with cognitive biases. For example, adding repeated numbers (so-called tie problems, e.g., 2 + 2) not only has a speed and accuracy advantage over adding different numbers (e.g., 1 + 3) but may also lead to under-representation of the result relative to a standard value (Charras et al., 2012, 2014). Does the tie advantage merely reflect easier encoding or retrieval compared to non-ties, or also a distorted result representation? To answer this question, 47 healthy adults performed two tasks, both of which indicated under-representation of tie results: In a result-to-position pointing task (Experiment 1) we measured the spatial mapping of numbers and found a left-bias for tie compared to non-tie problems. In a result-to-line-length production task (Experiment 2) we measured the underlying magnitude representation directly and obtained shorter lines for tie-compared to non-tie problems. These observations suggest that the processing benefit of tie problems comes at the cost of representational reduction of result meaning. This conclusion is discussed in the context of a recent model of arithmetic heuristics and biases.}, language = {en} } @phdthesis{Sixtus2018, author = {Sixtus, Elena}, title = {Subtle fingers - tangible numbers: The influence of finger counting experience on mental number representations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420115}, school = {Universit{\"a}t Potsdam}, pages = {vi, 138}, year = {2018}, abstract = {Numbers are omnipresent in daily life. They vary in display format and in their meaning so that it does not seem self-evident that our brains process them more or less easily and flexibly. The present thesis addresses mental number representations in general, and specifically the impact of finger counting on mental number representations. Finger postures that result from finger counting experience are one of many ways to convey numerical information. They are, however, probably the one where the numerical content becomes most tangible. By investigating the role of fingers in adults' mental number representations the four presented studies also tested the Embodied Cognition hypothesis which predicts that bodily experience (e.g., finger counting) during concept acquisition (e.g., number concepts) stays an immanent part of these concepts. The studies focussed on different aspects of finger counting experience. First, consistency and further details of spontaneously used finger configurations were investigated when participants repeatedly produced finger postures according to specific numbers (Study 1). Furthermore, finger counting postures (Study 2), different finger configurations (Study 2 and 4), finger movements (Study 3), and tactile finger perception (Study 4) were investigated regarding their capability to affect number processing. Results indicated that active production of finger counting postures and single finger movements as well as passive perception of tactile stimulation of specific fingers co-activated associated number knowledge and facilitated responses towards corresponding magnitudes and number symbols. Overall, finger counting experience was reflected in specific effects in mental number processing of adult participants. This indicates that finger counting experience is an immanent part of mental number representations. Findings are discussed in the light of a novel model. The MASC (Model of Analogue and Symbolic Codes) combines and extends two established models of number and magnitude processing. Especially a symbolic motor code is introduced as an essential part of the model. It comprises canonical finger postures (i.e., postures that are habitually used to represent numbers) and finger-number associations. The present findings indicate that finger counting functions both as a sensorimotor magnitude and as a symbolic representational format and that it thereby directly mediates between physical and symbolic size. The implications are relevant both for basic research regarding mental number representations and for pedagogic practices regarding the effectiveness of finger counting as a means to acquire a fundamental grasp of numbers.}, language = {en} } @article{WiemersBekkeringLindemann2017, author = {Wiemers, Michael and Bekkering, Harold and Lindemann, Oliver}, title = {Is more always up?}, series = {Journal of cognitive psychology}, volume = {29}, journal = {Journal of cognitive psychology}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2017.1302451}, pages = {642 -- 652}, year = {2017}, abstract = {It has been argued that the association of numbers and vertical space plays a fundamental role for the understanding of numerical concepts. However, convincing evidence for an association of numbers and vertical bimanual responses is still lacking. The present study tests the vertical Spatio-Numerical-Association-of-Response-Codes (SNARC) effect in a number classification task by comparing anatomical hand-based and spatial associations. A mixed effects model of linear spatial-numerical associations revealed no evidence for a vertical but clear support for an anatomical SNARC effect. Only if the task requirements prevented participants from using a number-hand association due to frequently alternating hand-to-button assignments, numbers were associated with the vertical dimension. Taken together, the present findings question the importance of vertical associations for the conceptual understanding of numerical magnitude as hypothesised by some embodied approaches to number cognition and suggest a preference for ego-over geocentric reference frames for the mapping of numbers onto space.}, language = {en} } @phdthesis{Reike2017, author = {Reike, Dennis}, title = {A look behind perceptual performance in numerical cognition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407821}, school = {Universit{\"a}t Potsdam}, pages = {vi, 136}, year = {2017}, abstract = {Recognizing, understanding, and responding to quantities are considerable skills for human beings. We can easily communicate quantities, and we are extremely efficient in adapting our behavior to numerical related tasks. One usual task is to compare quantities. We also use symbols like digits in numerical-related tasks. To solve tasks including digits, we must to rely on our previously learned internal number representations. This thesis elaborates on the process of number comparison with the use of noisy mental representations of numbers, the interaction of number and size representations and how we use mental number representations strategically. For this, three studies were carried out. In the first study, participants had to decide which of two presented digits was numerically larger. They had to respond with a saccade in the direction of the anticipated answer. Using only a small set of meaningfully interpretable parameters, a variant of random walk models is described that accounts for response time, error rate, and variance of response time for the full matrix of 72 digit pairs. In addition, the used random walk model predicts a numerical distance effect even for error response times and this effect clearly occurs in the observed data. In relation to corresponding correct answers error responses were systematically faster. However, different from standard assumptions often made in random walk models, this account required that the distributions of step sizes of the induced random walks be asymmetric to account for this asymmetry between correct and incorrect responses. Furthermore, the presented model provides a well-defined framework to investigate the nature and scale (e.g., linear vs. logarithmic) of the mapping of numerical magnitude onto its internal representation. In comparison of the fits of proposed models with linear and logarithmic mapping, the logarithmic mapping is suggested to be prioritized. Finally, we discuss how our findings can help interpret complex findings (e.g., conflicting speed vs. accuracy trends) in applied studies that use number comparison as a well-established diagnostic tool. Furthermore, a novel oculomotoric effect is reported, namely the saccadic overschoot effect. The participants responded by saccadic eye movements and the amplitude of these saccadic responses decreases with numerical distance. For the second study, an experimental design was developed that allows us to apply the signal detection theory to a task where participants had to decide whether a presented digit was physically smaller or larger. A remaining question is, whether the benefit in (numerical magnitude - physical size) congruent conditions is related to a better perception than in incongruent conditions. Alternatively, the number-size congruency effect is mediated by response biases due to numbers magnitude. The signal detection theory is a perfect tool to distinguish between these two alternatives. It describes two parameters, namely sensitivity and response bias. Changes in the sensitivity are related to the actual task performance due to real differences in perception processes whereas changes in the response bias simply reflect strategic implications as a stronger preparation (activation) of an anticipated answer. Our results clearly demonstrate that the number-size congruency effect cannot be reduced to mere response bias effects, and that genuine sensitivity gains for congruent number-size pairings contribute to the number-size congruency effect. Third, participants had to perform a SNARC task - deciding whether a presented digit was odd or even. Local transition probability of irrelevant attributes (magnitude) was varied while local transition probability of relevant attributes (parity) and global probability occurrence of each stimulus were kept constantly. Participants were quite sensitive in recognizing the underlying local transition probability of irrelevant attributes. A gain in performance was observed for actual repetitions of the irrelevant attribute in relation to changes of the irrelevant attribute in high repetition conditions compared to low repetition conditions. One interpretation of these findings is that information about the irrelevant attribute (magnitude) in the previous trial is used as an informative precue, so that participants can prepare early processing stages in the current trial, with the corresponding benefits and costs typical of standard cueing studies. Finally, the results reported in this thesis are discussed in relation to recent studies in numerical cognition.}, language = {en} } @unpublished{FischerShaki2015, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Two steps to space for numbers}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00612}, pages = {3}, year = {2015}, language = {en} } @unpublished{ShakiFischer2015, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Newborn chicks need no number tricks. Commentary: Number-space mapping in the newborn chick resembles humans' mental number line}, series = {Frontiers in human neuroscienc}, volume = {9}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2015.00451}, pages = {3}, year = {2015}, language = {en} } @article{FischerHartmann2014, author = {Fischer, Martin H. and Hartmann, Matthias}, title = {Pushing forward in embodied cognition: may we mouse the mathematical mind?}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.01315}, pages = {4}, year = {2014}, abstract = {Freely available software has popularized "mousetracking" to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when "mousing" the mathematical mind.}, language = {en} } @unpublished{KucianPlanggerO'Gormanetal.2013, author = {Kucian, Karin and Plangger, Fabienne and O'Gorman, Ruth and von Aster, Michael G.}, title = {Operational momentum effect in children with and without developmental dyscalculia}, series = {Frontiers in psychology}, volume = {4}, journal = {Frontiers in psychology}, number = {45}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2013.00847}, pages = {3}, year = {2013}, language = {en} } @misc{FischerBrugger2011, author = {Fischer, Martin H. and Brugger, Peter}, title = {When digits help digits spatial-numerical associations point to finger counting as prime example of embodied cognition}, series = {Frontiers in psychology}, volume = {2}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2011.00260}, pages = {7}, year = {2011}, abstract = {Spatial numerical associations (SNAs) are prevalent yet their origin is poorly understood. We first consider the possible prime role of reading habits in shaping SNAs and list three observations that argue against a prominent influence of this role: (1) directional reading habits for numbers may conflict with those for non-numerical symbols, (2) short-term experimental manipulations can overrule the impact of decades of reading experience, (3) SNAs predate the acquisition of reading. As a promising alternative, we discuss behavioral, neuroscientific, and neuropsychological evidence in support of finger counting as the most likely initial determinant of SNAs. Implications of this "manumerical cognition" stance for the distinction between grounded, embodied, and situated cognition are discussed.}, language = {en} }