@phdthesis{Paul2017, author = {Paul, Fabian}, title = {Markov state modeling of binding and conformational changes of proteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404273}, school = {Universit{\"a}t Potsdam}, pages = {X, 112}, year = {2017}, abstract = {Proteins are molecules that are essential for life and carry out an enormous number of functions in organisms. To this end, they change their conformation and bind to other molecules. However, the interplay between conformational change and binding is not fully understood. In this work, this interplay is investigated with molecular dynamics (MD) simulations of the protein-peptide system Mdm2-PMI and by analysis of data from relaxation experiments. The central task it to uncover the binding mechanism, which is described by the sequence of (partial) binding events and conformational change events including their probabilities. In the simplest case, the binding mechanism is described by a two-step model: binding followed by conformational change or conformational change followed by binding. In the general case, longer sequences with multiple conformational changes and partial binding events are possible as well as parallel pathways that differ in their sequences of events. The theory of Markov state models (MSMs) provides the theoretical framework in which all these cases can be modeled. For this purpose, MSMs are estimated in this work from MD data, and rate equation models, which are related to MSMs, are inferred from experimental relaxation data. The MD simulation and Markov modeling of the PMI-Mdm2 system shows that PMI and Mdm2 can bind via multiple pathways. A main result of this work is a dissociation rate on the order of one event per second, which was calculated using Markov modeling and is in agreement with experiment. So far, dissociation rates and transition rates of this magnitude have only been calculated with methods that speed up transitions by acting with time-dependent, external forces on the binding partners. The simulation technique developed in this work, in contrast, allows the estimation of dissociation rates from the combination of free energy calculation and direct MD simulation of the fast binding process. Two new statistical estimators TRAM and TRAMMBAR are developed to estimate a MSM from the joint data of both simulation types. In addition, a new analysis technique for time-series data from chemical relaxation experiments is developed in this work. It allows to identify one of the above-mentioned two-step mechanisms as the mechanism that underlays the data. The new method is valid for a broader range of concentrations than previous methods and therefore allows to choose the concentrations such that the mechanism can be uniquely identified. It is successfully tested with data for the binding of recoverin to a rhodopsin kinase peptide.}, language = {en} } @misc{ZhangChenSiemiatkowskaetal.2020, author = {Zhang, Youjun and Chen, Moxian and Siemiatkowska, Beata and Toleco, Mitchell Rey and Jing, Yue and Strotmann, Vivien and Zhang, Jianghua and Stahl, Yvonne and Fernie, Alisdair R.}, title = {A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524254}, pages = {14}, year = {2020}, abstract = {Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.}, language = {en} }