@misc{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {636}, doi = {10.25932/publishup-41913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419134}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} } @misc{AlHalbouniHolohanTaherietal.2018, author = {Al-Halbouni, Djamil and Holohan, Eoghan P. and Taheri, Abbas and Sch{\"o}pfer, Martin P. J. and Emam, Sacha and Dahm, Torsten}, title = {Geomechanical modelling of sinkhole development using distinct elements}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1061}, issn = {1866-8372}, doi = {10.25932/publishup-46843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468435}, pages = {35}, year = {2018}, abstract = {Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends.}, language = {en} } @misc{AngermannJackischAllroggenetal.2017, author = {Angermann, Lisa and Jackisch, Conrad and Allroggen, Niklas and Sprenger, Matthias and Zehe, Erwin and Tronicke, Jens and Weiler, Markus and Blume, Theresa}, title = {Form and function in hillslope hydrology}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {658}, issn = {1866-8372}, doi = {10.25932/publishup-41916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419161}, pages = {22}, year = {2017}, abstract = {The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017).}, language = {en} } @misc{PrahlBoettleCostaetal.2018, author = {Prahl, Boris F. and Boettle, Markus and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Kropp, J{\"u}rgen and Rybski, Diego}, title = {Damage and protection cost curves for coastal floods within the 600 largest European cities}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {938}, issn = {1866-8372}, doi = {10.25932/publishup-45967}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459672}, pages = {20}, year = {2018}, abstract = {The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.}, language = {en} } @misc{NordBoudevillainBerneetal.2017, author = {Nord, Guillaume and Boudevillain, Brice and Berne, Alexis and Branger, Flora and Braud, Isabelle and Dramais, Guillaume and G{\´e}rard, Simon and Le Coz, J{\´e}r{\^o}me and Lego{\^u}t, C{\´e}dric and Molini{\´e}, Gilles and Van Baelen, Joel and Vandervaere, Jean-Pierre and Andrieu, Julien and Aubert, Coralie and Calianno, Martin and Delrieu, Guy and Grazioli, Jacopo and Hachani, Sahar and Horner, Ivan and Huza, Jessica and Le Boursicaud, Rapha{\"e}l and Raupach, Timothy H. and Teuling, Adriaan J. and Uber, Magdalena and Vincendon, B{\´e}atrice and Wijbrans, Annette}, title = {A high space-time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ard{\`e}che region, France}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {671}, issn = {1866-8372}, doi = {10.25932/publishup-41912}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419127}, pages = {29}, year = {2017}, abstract = {A comprehensive hydrometeorological dataset is presented spanning the period 1 January 201131 December 2014 to improve the understanding of the hydrological processes leading to flash floods and the relation between rainfall, runoff, erosion and sediment transport in a mesoscale catchment (Auzon, 116 km(2)) of the Mediterranean region. Badlands are present in the Auzon catchment and well connected to high-gradient channels of bedrock rivers which promotes the transfer of suspended solids downstream. The number of observed variables, the various sensors involved (both in situ and remote) and the space-time resolution (similar to km(2), similar to min) of this comprehensive dataset make it a unique contribution to research communities focused on hydrometeorology, surface hydrology and erosion. Given that rainfall is highly variable in space and time in this region, the observation system enables assessment of the hydrological response to rainfall fields. Indeed, (i) rainfall data are provided by rain gauges (both a research network of 21 rain gauges with a 5 min time step and an operational network of 10 rain gauges with a 5 min or 1 h time step), S-band Doppler dual-polarization radars (1 km(2), 5 min resolution), disdrometers (16 sensors working at 30 s or 1 min time step) and Micro Rain Radars (5 sensors, 100m height resolution). Additionally, during the special observation period (SOP-1) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). (ii) Other meteorological data are taken from the operational surface weather observation stations of Meteo-France (including 2m air temperature, atmospheric pressure, 2 m relative humidity, 10m wind speed and direction, global radiation) at the hourly time resolution (six stations in the region of interest). (iii) The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations estimate water discharge at a 2-10 min time resolution. Two of these stations also measure additional physico-chemical variables (turbidity, temperature, conductivity) and water samples are collected automatically during floods, allowing further geochemical characterization of water and suspended solids. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 sensors installed in the intermittent hydrographic network continuously measures water level and water temperature in headwater subcatchments (from 0.17 to 116 km(2)) at a time resolution of 2-5 min. A network of soil moisture sensors enables the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, concomitant observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. Finally, this dataset is considered appropriate for understanding the rainfall variability in time and space at fine scales, improving areal rainfall estimations and progressing in distributed hydrological and erosion modelling.}, language = {en} }