@phdthesis{Castino2016, author = {Castino, Fabiana}, title = {Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396815}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2016}, abstract = {Extreme hydro-meteorological events, such as severe droughts or heavy rainstorms, constitute primary manifestations of climate variability and exert a critical impact on the natural environment and human society. This is particularly true for high-mountain areas, such as the eastern flank of the southern Central Andes of NW Argentina, a region impacted by deep convection processes that form the basis of extreme events, often resulting in floods, a variety of mass movements, and hillslope processes. This region is characterized by pronounced E-W gradients in topography, precipitation, and vegetation cover, spanning low to medium-elevation, humid and densely vegetated areas to high-elevation, arid and sparsely vegetated environments. This strong E-W gradient is mirrored by differences in the efficiency of surface processes, which mobilize and transport large amounts of sediment through the fluvial system, from the steep hillslopes to the intermontane basins and further to the foreland. In a highly sensitive high-mountain environment like this, even small changes in the spatiotemporal distribution, magnitude and rates of extreme events may strongly impact environmental conditions, anthropogenic activity, and the well-being of mountain communities and beyond. However, although the NW Argentine Andes comprise the catchments for the La Plata river that traverses one of the most populated and economically relevant areas of South America, there are only few detailed investigations of climate variability and extreme hydro-meteorological events. In this thesis, I focus on deciphering the spatiotemporal variability of rainfall and river discharge, with particular emphasis on extreme hydro-meteorological events in the subtropical southern Central Andes of NW Argentina during the past seven decades. I employ various methods to assess and quantify statistically significant trend patterns of rainfall and river discharge, integrating high-quality daily time series from gauging stations (40 rainfall and 8 river discharge stations) with gridded datasets (CPC-uni and TRMM 3B42 V7), for the period between 1940 and 2015. Evidence for a general intensification of the hydrological cycle at intermediate elevations (~ 0.5 - 3 km asl) at the eastern flank of the southern Central Andes is found both from rainfall and river-discharge time-series analysis during the period from 1940 to 2015. This intensification is associated with the increase of the annual total amount of rainfall and the mean annual discharge. However, most pronounced trends are found at high percentiles, i.e. extreme hydro-meteorological events, particularly during the wet season from December to February.An important outcome of my studies is the recognition of a rapid increase in the amount of river discharge during the period between 1971 and 1977, most likely linked to the 1976-77 global climate shift, which is associated with the North Pacific Ocean sea surface temperature variability. Interestingly, after this rapid increase, both rainfall and river discharge decreased at low and intermediate elevations along the eastern flank of the Andes. In contrast, during the same time interval, at high elevations, extensive areas on the arid Puna de Atacama plateau have recorded increasing annual rainfall totals. This has been associated with more intense extreme hydro-meteorological events from 1979 to 2014. This part of the study reveals that low-, intermediate, and high-elevation sectors in the Andes of NW Argentina respond differently to changing climate conditions. Possible forcing mechanisms of the pronounced hydro-meteorological variability observed in the study area are also investigated. For the period between 1940 and 2015, I analyzed modes of oscillation of river discharge from small to medium drainage basins (102 to 104 km2), located on the eastern flank of the orogen. First, I decomposed the relevant monthly time series using the Hilbert-Huang Transform, which is particularly appropriate for non-stationary time series that result from non-linear natural processes. I observed that in the study region discharge variability can be described by five quasi-periodic oscillatory modes on timescales varying from 1 to ~20 years. Secondly, I tested the link between river-discharge variations and large-scale climate modes of variability, using different climate indices, such as the BEST ENSO (Bivariate El Ni{\~n}o-Southern Oscillation Time-series) index. This analysis reveals that, although most of the variance on the annual timescale is associated with the South American Monsoon System, a relatively large part of river-discharge variability is linked to Pacific Ocean variability (PDO phases) at multi-decadal timescales (~20 years). To a lesser degree, river discharge variability is also linked to the Tropical South Atlantic (TSA) sea surface temperature anomaly at multi-annual timescales (~2-5 years). Taken together, these findings exemplify the high degree of sensitivity of high-mountain environments with respect to climatic variability and change. This is particularly true for the topographic transitions between the humid, low-moderate elevations and the semi-arid to arid highlands of the southern Central Andes. Even subtle changes in the hydro-meteorological regime of these areas of the mountain belt react with major impacts on erosional hillslope processes and generate mass movements that fundamentally impact the transport capacity of mountain streams. Despite more severe storms in these areas, the fluvial system is characterized by pronounced variability of the stream power on different timescales, leading to cycles of sediment aggradation, the loss of agriculturally used land and severe impacts on infrastructure.}, language = {en} } @phdthesis{Liu2020, author = {Liu, Sibiao}, title = {Controls of foreland-deformation patterns in the orogen-foreland shortening system}, doi = {10.25932/publishup-44573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445730}, school = {Universit{\"a}t Potsdam}, pages = {vi, 150}, year = {2020}, abstract = {The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat.}, language = {en} } @phdthesis{Tofelde2018, author = {Tofelde, Stefanie}, title = {Signals stored in sediment}, doi = {10.25932/publishup-42716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427168}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 172}, year = {2018}, abstract = {Tectonic and climatic boundary conditions determine the amount and the characteristics (size distribution and composition) of sediment that is generated and exported from mountain regions. On millennial timescales, rivers adjust their morphology such that the incoming sediment (Qs,in) can be transported downstream by the available water discharge (Qw). Changes in climatic and tectonic boundary conditions thus trigger an adjustment of the downstream river morphology. Understanding the sensitivity of river morphology to perturbations in boundary conditions is therefore of major importance, for example, for flood assessments, infrastructure and habitats. Although we have a general understanding of how rivers evolve over longer timescales, the prediction of channel response to changes in boundary conditions on a more local scale and over shorter timescales remains a major challenge. To better predict morphological channel evolution, we need to test (i) how channels respond to perturbations in boundary conditions and (ii) how signals reflecting the persisting conditions are preserved in sediment characteristics. This information can then be applied to reconstruct how local river systems have evolved over time. In this thesis, I address those questions by combining targeted field data collection in the Quebrada del Toro (Southern Central Andes of NW Argentina) with cosmogenic nuclide analysis and remote sensing data. In particular, I (1) investigate how information on hillslope processes is preserved in the 10Be concentration (geochemical composition) of fluvial sediments and how those signals are altered during downstream transport. I complement the field-based approach with physical experiments in the laboratory, in which I (2) explore how changes in sediment supply (Qs,in) or water discharge (Qw) generate distinct signals in the amount of sediment discharge at the basin outlet (Qs,out). With the same set of experiments, I (3) study the adjustments of alluvial channel morphology to changes in Qw and Qs,in, with a particular focus in fill-terrace formation. I transfer the findings from the experiments to the field to (4) reconstruct the evolution of a several-hundred meter thick fluvial fill-terrace sequence in the Quebrada del Toro. I create a detailed terrace chronology and perform reconstructions of paleo-Qs and Qw from the terrace deposits. In the following paragraphs, I summarize my findings on each of these four topics. First, I sampled detrital sediment at the outlet of tributaries and along the main stem in the Quebrada del Toro, analyzed their 10Be concentration ([10Be]) and compared the data to a detailed hillslope-process inventory. The often observed non-linear increase in catchment-mean denudation rate (inferred from [10Be] in fluvial sediment) with catchment-median slope, which has commonly been explained by an adjustment in landslide-frequency, coincided with a shift in the main type of hillslope processes. In addition, the [10Be] in fluvial sediments varied with grain-size. I defined the normalized sand-gravel-index (NSGI) as the 10Be-concentration difference between sand and gravel fractions divided by their summed concentrations. The NSGI increased with median catchment slope and coincided with a shift in the prevailing hillslope processes active in the catchments, thus making the NSGI a potential proxy for the evolution of hillslope processes over time from sedimentary deposits. However, the NSGI recorded hillslope-processes less well in regions of reduced hillslope-channel connectivity and, in addition, has the potential to be altered during downstream transport due to lateral sediment input, size-selective sediment transport and abrasion. Second, my physical experiments revealed that sediment discharge at the basin outlet (Qs,out) varied in response to changes in Qs,in or Qw. While changes in Qw caused a distinct signal in Qs,out during the transient adjustment phase of the channel to new boundary conditions, signals related to changes in Qs,in were buffered during the transient phase and likely only become apparent once the channel is adjusted to the new conditions. The temporal buffering is related to the negative feedback between Qs,in and channel-slope adjustments. In addition, I inferred from this result that signals extracted from the geochemical composition of sediments (e.g., [10Be]) are more likely to represent modern-day conditions during times of aggradation, whereas the signal will be temporally buffered due to mixing with older, remobilized sediment during times of channel incision. Third, the same set of experiments revealed that river incision, channel-width narrowing and terrace cutting were initiated by either an increase in Qw, a decrease in Qs,in or a drop in base level. The lag-time between the external perturbation and the terrace cutting determined (1) how well terrace surfaces preserved the channel profile prior to perturbation and (2) the degree of reworking of terrace-surface material. Short lag-times and well preserved profiles occurred in cases with a rapid onset of incision. Also, lag-times were synchronous along the entire channel after upstream perturbations (Qw, Qs,in), whereas base-level fall triggered an upstream migrating knickzone, such that lag-times increased with distance upstream. Terraces formed after upstream perturbations (Qw, Qs,in) were always steeper when compared to the active channel in new equilibrium conditions. In the base-level fall experiment, the slope of the terrace-surfaces and the modern channel were similar. Hence, slope comparisons between the terrace surface and the modern channel can give insights into the mechanism of terrace formation. Fourth, my detailed terrace-formation chronology indicated that cut-and-fill episodes in the Quebrada del Toro followed a ~100-kyr cyclicity, with the oldest terraces ~ 500 kyr old. The terraces were formed due to variability in upstream Qw and Qs. Reconstructions of paleo-Qs over the last 500 kyr, which were restricted to times of sediment deposition, indicated only minor (up to four-fold) variations in paleo-denudation rates. Reconstructions of paleo-Qw were limited to the times around the onset of river incision and revealed enhanced discharge from 10 to 85\% compared to today. Such increases in Qw are in agreement with other quantitative paleo-hydrological reconstructions from the Eastern Andes, but have the advantage of dating further back in time.}, language = {en} }