@article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Role of the trunk during drop jumps on stable and unstable surfaces}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-014-3004-9}, pages = {139 -- 146}, year = {2015}, abstract = {The present study investigated associations between trunk muscle strength, jump performance, and lower limb kinematics during drop jumps on stable and unstable surfaces. Next to this behavioral approach, correlations were also computed on a neuromuscular level between trunk and leg muscle activity during the same test conditions. Twenty-nine healthy and physically active subjects (age 23 +/- A 3 years) were enrolled in this study. Peak isokinetic torque (PIT) of the trunk flexors and extensors was assessed separately on an isokinetic device. In addition, tests included drop jumps (DJ) on a force plate under stable and unstable (i.e., balance pad on top of the force plate) surfaces. Lower limb kinematics as well as electromyographic activity of selected trunk and leg muscles were analyzed. Significant positive but small correlations (0.50 a parts per thousand currency sign r a parts per thousand currency sign 0.66, p < 0.05) were detected between trunk extensor PIT and athletic performance measures (i.e., DJ height, DJ performance index), irrespective of surface condition. Further, significant negative but small correlation coefficients were examined between trunk extensor PIT and knee valgus motion under stable and unstable surface conditions (-0.48 a parts per thousand currency sign r a parts per thousand currency sign -0.45, p < 0.05). In addition, significant positive but small correlations (0.45 a parts per thousand currency sign r a parts per thousand currency sign 0.68, p < 0.05) were found between trunk and leg muscle activity, irrespective of surface condition. Behavioral and neuromuscular data from this study indicate that, irrespective of the surface condition (i.e., jumping on stable or unstable ground), the trunk plays a minor role for leg muscle performance/activity during DJ. This implies only limited effects of trunk muscle strengthening on jump performance in the stretch-shortening cycle.}, language = {en} } @article{PrieskeAboodardaSierraetal.2017, author = {Prieske, Olaf and Aboodarda, Saied J. and Sierra, Jose A. Benitez and Behm, David G. and Granacher, Urs}, title = {Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output}, series = {European journal of applied physiology}, volume = {117}, journal = {European journal of applied physiology}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-016-3524-6}, pages = {323 -- 334}, year = {2017}, abstract = {The purpose of the present study was to examine the effects of unilateral fatigue of the knee extensors at different movement velocities on neuromuscular performance in the fatigued and non-fatigued leg. Unilateral fatigue of the knee extensors was induced in 11 healthy young men (23.7 +/- 3.8 years) at slower (60A degrees/s; FAT60) and faster movement velocities (240A degrees/s; FAT240) using an isokinetic dynamometer. A resting control (CON) condition was included. The fatigue protocols consisted of five sets of 15 maximal concentric knee extensions using the dominant leg. Before and after fatigue, peak isokinetic torque (PIT) and time to PIT (TTP) of the knee extensors as well as electromyographic (EMG) activity of vastus medialis, vastus lateralis, and biceps femoris muscles were assessed at 60 and 240A degrees/s movement velocities in the fatigued and non-fatigued leg. In the fatigued leg, significantly greater PIT decrements were observed following FAT60 and FAT240 (11-19\%) compared to CON (3-4\%, p = .002, d = 2.3). Further, EMG activity increased in vastus lateralis and biceps femoris muscle following FAT240 only (8-28\%, 0.018 <= p <=.024, d = 1.8). In the non-fatigued leg, shorter TTP values were found after the FAT60 protocol (11-15\%, p = .023, d = 2.4). No significant changes were found for EMG data in the non-fatigued leg. The present study revealed that both slower and faster velocity fatiguing contractions failed to show any evidence of cross-over fatigue on PIT. However, unilateral knee extensor fatigue protocols conducted at slower movement velocities (i.e., 60A degrees/s) appear to modulate torque production on the non-fatigued side (evident in shorter TTP values).}, language = {en} } @article{MendezRebolledoGaticaRojasMartinezValdesetal.2016, author = {Mendez-Rebolledo, Guillermo and Gatica-Rojas, Valeska and Martinez-Valdes, Eduardo Andr{\´e}s and Xie, H. B.}, title = {The recruitment order of scapular muscles depends on the characteristics of the postural task}, series = {Journal of electromyography and kinesiology}, volume = {31}, journal = {Journal of electromyography and kinesiology}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2016.09.001}, pages = {40 -- 47}, year = {2016}, abstract = {Previous studies show that the scapular muscle recruitment order could possibly change according to the characteristics of the postural task. We aimed to compare the activation latencies of serratus anterior (SA), upper, middle, and lower trapezius (UT, MT and LT, respectively) between an unpredictable perturbation (sudden arm destabilization) and a predictable task (voluntary arm raise) and, to determine the differences in the muscle recruitment order in each task. The electromyographic signals of 23 participants were recorded while the tasks were performed. All scapular muscles showed earlier onset latency in the voluntary arm raise than in the sudden arm destabilization. No significant differences were observed in the muscle recruitment order for the sudden arm destabilization (p > 0.05). Conversely, for voluntary arm raise the MT, LT SA and anterior deltoid (AD) were activated significantly earlier than the UT (p < 0.001). Scapular muscles present a specific recruitment order during a predictable task: SA was activated prior to the AD and the UT after the AD, in a recruitment order of SA, AD, UT, MT, and LT. While in an unpredictable motor task, all muscles were activated after the destabilization without a specific recruitment order, but rather a simultaneous activation. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MadadiShadJafarnezhadgeroZagoetal.2019, author = {Madadi-Shad, Morteza and Jafarnezhadgero, Amir Ali and Zago, Matteo and Granacher, Urs}, title = {Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys}, series = {Gait \& posture}, volume = {72}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2019.05.030}, pages = {69 -- 75}, year = {2019}, abstract = {Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys.}, language = {en} } @article{LinKhajooeiEngeletal.2021, author = {Lin, Chiao-I and Khajooei, Mina and Engel, Tilman and Nair, Alexandra and Heikkila, Mika and Kaplick, Hannes and Mayer, Frank}, title = {The effect of chronic ankle instability on muscle activations in lower extremities}, series = {PLOS ONE / Public Library of Science}, volume = {16}, journal = {PLOS ONE / Public Library of Science}, number = {2}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0247581}, pages = {15}, year = {2021}, abstract = {Background/Purpose Muscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls. Materials and methods In a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≤0.05 and 95\% confidence intervals were applied to determine group differences. Cohen's d effect sizes were calculated to evaluate the extent of differences. Results Participants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (p<0.05). Overall, leg muscles (rectus femoris, biceps femoris, and gluteus medius) activated earlier and less bilaterally (d = 0.30-0.88) and trunk muscles (bilateral rectus abdominus and NON-erector spinae) activated earlier and more for the CAI group than CON group (d = 0.33-1.09). Conclusion Unilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI.}, language = {en} } @article{JafarnezhadgeroPiranHamlabadiSajedietal.2022, author = {Jafarnezhadgero, Amir Ali and Piran Hamlabadi, Milad and Sajedi, Heidar and Granacher, Urs}, title = {Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls}, series = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, volume = {91}, journal = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2021.11.002}, pages = {260 -- 265}, year = {2022}, abstract = {Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19.}, language = {en} } @article{BuschBlasimannHenleetal.2019, author = {Busch, Aglaja and Blasimann, Angela and Henle, Philipp and Baur, Heiner}, title = {Neuromuscular activity during stair descent in ACL reconstructed patients}, series = {The Knee}, volume = {26}, journal = {The Knee}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0968-0160}, doi = {10.1016/j.knee.2018.12.011}, pages = {310 -- 316}, year = {2019}, abstract = {Background: The anterior cruciate ligament (ACL) rupture is a severe knee injury. Altered kinematics and kinetics in ACL reconstructed (ACL-R) patients compared to healthy participants (ACL-I) are known and attributed to an altered sensorimotor control. However, studies on neuromuscular control often lack homogeneous patient cohorts. The objective was to examine neuromuscular activity during stair descent in patients one year after ACL reconstruction. Method: Neuromuscular activity of vastus medialis (VM) and lateralis (VL), biceps femoris (BF) and semitendinosus (ST) was recorded by electromyography in 10 ACL-R (age: 26 +/- 10 years; height: 175 +/- 6 cm; mass: 75 +/- 14 kg) and 10 healthy matched controls (age: 31 +/- 7 years; height: 175 +/- 7 cm; mass: 68 +/- 10 kg). A 10-minute walking treadmill warm-up was used for submaximal normalization. Afterwards participants descended 10 times a six-step stairway at a self-selected speed. The movement was separated into pre-activation (PRE), weight acceptance (WA) and push-off phase (PO). Normalized root mean squares for each muscle, limb and movement phase were calculated. Kruskal-Wallis ANOVA compared ACL-R injured and contralateral leg and the ACL-I leg (alpha = 0.05). Results: Significant increased normalised activity in ST during WA in ACL-R injured leg compared to ACL-I and during PO in VL in the ACL-R contralateral leg compared to ACL-I. Decreased activity was shown in VM in ACL-R injured compared to contralateral leg (p < 0.05). Conclusion: Altered neuromuscular activations are present one year after ACL reconstruction compared to the contralateral and healthy matched control limb. Current standard rehabilitation programs may not be able to fully restore sensorimotor control and demand further investigations. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{BaurMuellerHirschmuelleretal.2011, author = {Baur, Heiner and M{\"u}ller, Steffen and Hirschm{\"u}ller, Anja and Cassel, Michael and Weber, Josefine and Mayer, Frank}, title = {Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals}, series = {Journal of electromyography and kinesiology}, volume = {21}, journal = {Journal of electromyography and kinesiology}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2010.11.010}, pages = {499 -- 505}, year = {2011}, abstract = {Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT.}, language = {en} }