@article{ZhangWielandReicheetal.2011, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Wind modelling for wind erosion research by open source computational fluid dynamics}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {6}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.02.001}, pages = {316 -- 324}, year = {2011}, abstract = {The open source computational fluid dynamics (CFD) wind model (CFD-WEM) for wind erosion research in the Xilingele grassland in Inner Mongolia (autonomous region, China) is compared with two open source CFD models Gerris and OpenFOAM. The evaluation of these models was made according to software technology, implemented methods, handling, accuracy and calculation speed. All models were applied to the same wind tunnel data set. Results show that the simplest CFD-WEM has the highest calculation speed with acceptable accuracy, and the most powerful OpenFOAM produces the simulation with highest accuracy and the lowest calculation speed. Gerris is between CFD-WEM and OpenFOAM. It calculates faster than OpenFOAM, and it is capable to solve different CFD problems. CFD-WEM is the optimal model to be further developed for wind erosion research in Inner Mongolia grassland considering its efficiency and the uncertainties of other input data. However, for other applications using CFD technology, Gerris and OpenFOAM can be good choices. This paper shows the powerful capability of open source CFD software in wind erosion study, and advocates more involvement of open source technology in wind erosion and related ecological researches.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuo-dong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {A computational fluid dynamics model for wind simulation: model implementation and experimental validation}, series = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, volume = {13}, journal = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, number = {4}, publisher = {Zhejiang University Press}, address = {Hangzou}, issn = {1673-565X}, doi = {10.1631/jzus.A1100231}, pages = {274 -- 283}, year = {2012}, abstract = {To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.}, language = {en} }