@article{WillnerGerdesMassonneetal.2011, author = {Willner, Arne P. and Gerdes, Axel and Massonne, Hans-Joachim and Schmidt, Alexander and Sudo, Masafumi and Thomson, Stuart N. and Vujovich, Graciela}, title = {The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure-temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina)}, series = {Contributions to mineralogy and petrology}, volume = {162}, journal = {Contributions to mineralogy and petrology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-010-0598-8}, pages = {303 -- 327}, year = {2011}, abstract = {The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470 degrees C and 1.4 GPa, 530 degrees C, when the penetrative s(2)-foliation was formed. The average age of garnet crystallization of 390 +/- 2 Ma (2 sigma) was determined from three four-point Lu-Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560 degrees C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An Ar-40/39 Ar plateau age of white mica at 353 +/- 1 Ma (1 sigma) indicates the time of cooling below 350-400 degrees C. These temperatures were attained at pressures of 0.2-0.3 GPa, indicative of an average exhumation rate of >= 1 mm/a for the period 390-353 Ma. Late hydrous influx at 0.1-0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284-295 Ma, the entire basement cooled below 280 degrees C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10-12 degrees C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent-continent collisional setting.}, language = {en} } @article{LopezAltenbergerBellosetal.2019, author = {Lopez, Jose P. and Altenberger, Uwe and Bellos, Laura I. and G{\"u}nter, Christina}, title = {The Cumbres Calchaquies Range (NW-Argentina)}, series = {Journal of South American earth sciences}, volume = {93}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2019.03.016}, pages = {480 -- 494}, year = {2019}, abstract = {The Cumbres Calchaquies Range forms part of the Famatinian metamorphic basement of the Eastern Sierras Pampeanas. The sedimentary protoliths of the metamorphic sequence were deposited in a marine basin alongside the western margin of Gondwana during the Neoproterozoic. New petrologic, geochemical and thermobarometric data give insight into the evolution of the sedimentary basin, its sediment source area, its later metamorphic overprint and its regional relationship to other parts of the Famatinian basement. The metamorphic series studied here consists of banded schists and gneisses and rare calcsilcate-rocks and migmatites that have been reworked by mid-to deep-crustal metamorphic and tectonic processes. The bulk rock compositions indicate shale, wacke, marl and litharenitic protoliths. The metamorphosed elastic sediments have major and trace element compositions indicating a continental granitoid-dominated source area with low sediment recycling. Low SiO2/Al2O3 ratios suggest a relatively low maturity of the sedimentary protoliths. Therefore, the Cumbres Calchaquies section represents a sequence of turbidity currents with progressive shallowing of the depositional environment, as indicated by quartz- and carbonate-rich sediments. The overall data are consistent with the geodynamic environment of a basin adjacent to a continental magmatic arc as the most probable scenario. Whereas the sedimentary protoliths of the metamorphic basement in the Sierra de Ancasti and Sierra de Aconquija, located ca 100-300 km south of the study area are interpreted as originating in an evolving back-arc basin, our results from the Cumbres Calchaquies region indicate a sedimentary source in a felsic continental arc with no significant influx of basic rocks. The Famatinian metamorphic evolution of the Cumbres Calchaquies rocks is of typical Barrow-type, culminating in partial melting of the metasediments. Conventional thermobarometry combined with thermodynamic models (pseudosections) reveal a prograde evolution reaching peak conditions of ca 665 degrees C/6.1 Kbar. This implies a geothermal gradient of ca 35 degrees C/km, which is slightly higher than the average for continental crust and suggests a period of crustal thinning, as known from back-arc basins, or additional heat supply by voluminous intrusions.}, language = {en} } @article{KulahciCichyTemeletal.2021, author = {Kulahci, Gullu Deniz and Cichy, Sarah Bettina and Temel, Abidin and Spallanzani, Roberta}, title = {Pre-eruptive PTX fluid-conditions of the Afyon Volcanic Complex (Western Anatolia, Turkey)}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {398}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2021.106297}, pages = {12}, year = {2021}, abstract = {This study is trying to understand the pre-eruptive magma storage and crystallization conditions of the Middle Miocene aged, silica-saturated trachytic rocks of the Afyon Volcanic Complex (AVC) in Western Anatolia, Turkey. Those rocks can be divided by their high K2O, K2O/Na2O ratio and Mg\# into two groups, namely the intermediate-potassic (IPG) and the ultrapotassic (UPG). Here we are comparing calculated pressure (P) - temperature (T) conditions derived from geothermobarometric calculations of natural samples with results of high-pressure, high-temperature phase equilibria experiments. IPG samples are richer in silica (57-64 wt\% SiO2), whereas UPG samples show intermediate SiO2 contents of 56-58 wt\%. UPG are having high K2O contents ((>)9 wt \%), K2O/Na2O ratios ((>)10 wt\%) and Mg\# values (75-77). IPG phenocrysts comprise plagioclase + biotite + amphibole + clinopyroxene +/- orthopyroxene +/- sanidine +/- phlogopite and oxides, while UPG mineralogical assemblage consists of amphibole + phlogopite + clinopyroxene + olivine + sanidine and oxides. IPG and UPG are enriched in Large-Ion Lithophile Elements (LILE), and both have negative anomalies in Nb, Sr, Zr and Ti elements. Additionally, IPG shows positive anomalies in Pb. Both IPG and UPG display enrichment in Light Rare Earth Elements (LREE), while IPG shows a more significant negative anomaly in Eu when compared to UPG. Plagioclase fractionation may play a role in magma generation. In IPG samples Ni and Cr values range between (3.3-18.8 ppm) and (2.6-27.8 ppm), respectively; whereas UPG samples have (119.1-120.7 ppm) Ni and (212.1-219.9 ppm) Cr. Dy/Yb ratios of IPG and UPG are higher than 2 and may indicate that garnet was present in the source. Geothermobarometric calculations for natural IPG clinopyroxene-melt pairs imply higher PT conditions (Dogan-Kulahci et al., 2015), while in this study high-pressure/high-temperature (HP/HT) phase equilibria experiments recreated the natural mineral assemblage at 2-4 kbar, 6-9 km and c. 900 degrees C. New plagioclase-melt calculations have confirmed lower mean magma storage temperatures, which are closer to the experimental results but still slightly elevated. Thus, trace element results of the natural rocks and experimental data may imply that a deep garnet-bearing magma source mixed with shallower magmas (IPG) was feeding the volcanic eruption.}, language = {en} }