@phdthesis{Rector2019, author = {Rector, Michael V.}, title = {The acute effect of exercise on flow-mediated dilation in young people with cystic fibrosis}, doi = {10.25932/publishup-43893}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438938}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2019}, abstract = {Introduction: Cystic fibrosis (CF) is a genetic disease which disrupts the function of an epithelial surface anion channel, CFTR (cystic fibrosis transmembrane conductance regulator). Impairment to this channel leads to inflammation and infection in the lung causing the majority of morbidity and mortality. However, CF is a multiorgan disease affecting many tissues, including vascular smooth muscle. Studies have revealed young people with cystic fibrosis lacking inflammation and infection still demonstrate vascular endothelial dysfunction, measured per flow-mediated dilation (FMD). In other disease cohorts, i.e. diabetic and obese, endurance exercise interventions have been shown improve or taper this impairment. However, long-term exercise interventions are risky, as well as costly in terms of time and resources. Nevertheless, emerging research has correlated the acute effects of exercise with its long-term benefits and advocates the study of acute exercise effects on FMD prior to longitudinal studies. The acute effects of exercise on FMD have previously not been examined in young people with CF, but could yield insights on the potential benefits of long-term exercise interventions. The aims of these studies were to 1) develop and test the reliability of the FMD method and its applicability to study acute exercise effects; 2) compare baseline FMD and the acute exercise effect on FMD between young people with and without CF; and 3) explore associations between the acute effects of exercise on FMD and demographic characteristics, physical activity levels, lung function, maximal exercise capacity or inflammatory hsCRP levels. Methods: Thirty young volunteers (10 people with CF, 10 non-CF and 10 non-CF active matched controls) between the ages of 10 and 30 years old completed blood draws, pulmonary function tests, maximal exercise capacity tests and baseline FMD measurements, before returning approximately 1 week later and performing a 30-min constant load training at 75\% HRmax. FMD measurements were taken prior, immediately after, 30 minutes after and 1 hour after constant load training. ANOVAs and repeated measures ANOVAs were employed to explore differences between groups and timepoints, respectively. Linear regression was implemented and evaluated to assess correlations between FMD and demographic characteristics, physical activity levels, lung function, maximal exercise capacity or inflammatory hsCRP levels. For all comparisons, statistical significance was set at a p-value of α < 0.05. Results: Young people with CF presented with decreased lung function and maximal exercise capacity compared to matched controls. Baseline FMD was also significantly decreased in the CF group (CF: 5.23\% v non-CF: 8.27\% v non-CF active: 9.12\%). Immediately post-training, FMD was significantly attenuated (approximately 40\%) in all groups with CF still demonstrating the most minimal FMD. Follow-up measurements of FMD revealed a slow recovery towards baseline values 30 min post-training and improvements in the CF and non-CF active groups 60 min post-training. Linear regression exposed significant correlations between maximal exercise capacity (VO2 peak), BMI and FMD immediately post-training. Conclusion: These new findings confirm that CF vascular endothelial dysfunction can be acutely modified by exercise and will aid in underlining the importance of exercise in CF populations. The potential benefits of long-term exercise interventions on vascular endothelial dysfunction in young people with CF warrants further investigation.}, language = {en} }