@article{RamirezCampilloAlvarezGarciaPinillosetal.2018, author = {Ramirez-Campillo, Rodrigo and Alvarez, Cristian and Garcia-Pinillos, Felipe and Sanchez-Sanchez, Javier and Yanci, Javier and Castillo, Daniel and Loturco, Irineu and Chaabene, Helmi and Moran, Jason and Izquierdo, Mikel}, title = {Optimal reactive strength index}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002467}, pages = {885 -- 893}, year = {2018}, abstract = {Ramirez-Campillo, R, Alvarez, C, Garc{\´i}a-Pinillos, F, Sanchez-Sanchez, J, Yanci, J, Castillo, D, Loturco, I, Chaabene, H, Moran, J, and Izquierdo, M. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res 32(4): 885-893, 2018—This study aimed to compare the effects of drop-jump training using a fixed drop-box height (i.e., 30-cm [FIXED]) vs. an optimal (OPT) drop-box height (i.e., 10-cm to 40-cm: generating an OPT reactive strength index [RSI]) in youth soccer players' physical fitness. Athletes were randomly allocated to a control group (n = 24; age = 13.7 years), a fixed drop-box height group (FIXED, n = 25; age = 13.9 years), or an OPT drop-box height group (OPT, n = 24; age = 13.1 years). Before and after 7 weeks of training, tests for the assessment of jumping (countermovement jump [CMJ], 5 multiple bounds), speed (20-m sprint time), change of direction ability (CODA [Illinois test]), strength {RSI and 5 maximal squat repetition test (5 repetition maximum [RM])}, endurance (2.4-km time trial), and kicking ability (maximal kicking distance) were undertaken. Analyses revealed main effects of time for all dependent variables (p < 0.001, d = 0.24-0.72), except for 20-m sprint time. Analyses also revealed group × time interactions for CMJ (p < 0.001, d = 0.51), depth jump (DJ) (p < 0.001, d = 0.30), 20-m sprint time (p < 0.001, d = 0.25), CODA (p < 0.001, d = 0.22), and 5RM (p < 0.01, d = 0.16). Post hoc analyses revealed increases for the FIXED group (CMJ: 7.4\%, d = 0.36; DJ: 19.2\%, d = 0.49; CODA: -3.1\%, d = -0.21; 5RM: 10.5\%, d = 0.32) and the OPT group (CMJ: 16.7\%, d = 0.76; DJ: 36.1\%, d = 0.79; CODA: -4.4\%, d = -0.34; 5RM: 18.1\%, d = 0.47). Post hoc analyses also revealed increases for the OPT group in 20-m sprint time (-3.7\%, d = 0.27). Therefore, to maximize the effects of plyometric training, an OPT approach is recommended. However, using adequate fixed drop-box heights may provide a rational and practical alternative.}, language = {en} } @article{NegraChaabeneSammoudetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Prieske, Olaf and Moran, Jason and Ramirez-Campillo, Rodrigo and Nejmaoui, Ali and Granacher, Urs}, title = {The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players}, series = {International journal of sports physiology and performance : IJSSP}, volume = {15}, journal = {International journal of sports physiology and performance : IJSSP}, number = {2}, publisher = {Human Kinetics}, address = {Champaign, Ill.}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0866}, pages = {189 -- 195}, year = {2020}, abstract = {Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players.}, language = {en} }