@misc{ThirumalaikumarDevkarMehterovetal.2017, author = {Thirumalaikumar, Venkatesh P. and Devkar, Vikas and Mehterov, Nikolay and Ali, Shawkat and Ozgur, Rengin and Turkan, Ismail and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {568}, issn = {1866-8372}, doi = {10.25932/publishup-42390}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423908}, pages = {13}, year = {2017}, abstract = {Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.}, language = {en} } @misc{TaffarelloSrinivasanSamprognaMohoretal.2018, author = {Taffarello, Denise and Srinivasan, Raghavan and Samprogna Mohor, Guilherme and Guimar{\~a}es, Jo{\~a}o Luis Bittencourt and Calijuri, Maria do Carmo and Mendiondo, Eduardo Mario}, title = {Modeling freshwater quality scenarios with ecosystem-basedadaptation in the headwaters of the Cantareira system, Brazil}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {935}, issn = {1866-8372}, doi = {10.25932/publishup-45925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459253}, pages = {4699 -- 4723}, year = {2018}, abstract = {Although hydrologic models provide hypothesis testing of complex dynamics occurring at catchments, fresh-water quality modeling is still incipient at many subtropical headwaters. In Brazil, a few modeling studies assess freshwater nutrients, limiting policies on hydrologic ecosystem services. This paper aims to compare freshwater quality scenarios under different land-use and land-cover (LULC) change, one of them related to ecosystem-based adaptation (EbA), in Brazilian headwaters. Using the spatially semi-distributed Soil and Water Assessment Tool (SWAT) model, nitrate, total phosphorous (TP) and sediment were modeled in catchments ranging from 7.2 to 1037 km(2). These head-waters were eligible areas of the Brazilian payment for ecosystem services (PES) projects in the Cantareira water supply system, which had supplied water to 9 million people in the Sao Paulo metropolitan region (SPMR). We considered SWAT modeling of three LULC scenarios: (i) recent past scenario (S1), with historical LULC in 1990; (ii) current land-use scenario (S2), with LULC for the period 2010-2015 with field validation; and (iii) future land-use scenario with PES (S2 + EbA). This latter scenario proposed forest cover restoration through EbA following the river basin plan by 2035. These three LULC scenarios were tested with a selected record of rainfall and evapotranspiration observed in 2006-2014, with the occurrence of extreme droughts. To assess hydrologic services, we proposed the hydrologic service index (HSI), as a new composite metric comparing water pollution levels (WPL) for reference catchments, related to the grey water footprint (greyWF) and water yield. On the one hand, water quality simulations allowed for the regionalization of greyWF at spatial scales under LULC scenarios. According to the critical threshold, HSI identified areas as less or more sustainable catchments. On the other hand, conservation practices simulated through the S2 + EbA scenario envisaged not only additional and viable best management practices (BMP), but also preventive decision-making at the headwaters of water supply systems.}, language = {en} } @misc{SiegmundWiedermannDongesetal.2016, author = {Siegmund, Jonatan Frederik and Wiedermann, Marc and Donges, Jonathan Friedemann and Donner, Reik Volker}, title = {Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {497}, issn = {1866-8372}, doi = {10.25932/publishup-40835}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408352}, pages = {15}, year = {2016}, abstract = {Ongoing climate change is known to cause an increase in the frequency and amplitude of local temperature and precipitation extremes in many regions of the Earth. While gradual changes in the climatological conditions have already been shown to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. Studying this question calls for the application of statistical methods that are tailored to the specific properties of event time series. Here, we employ event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences in order to systematically quantify simultaneities between meteorological extremes and the timing of the flowering of four shrub species across Germany. Our study confirms previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of the investigated plants. However, previous studies solely based on correlation analysis do not allow deriving explicit estimates of the strength of such interdependencies without further assumptions, a gap that is closed by our analysis. In addition to direct impacts of extremely warm and cold spring temperatures, our analysis reveals statistically significant indications of an influence of temperature extremes in the autumn preceding the flowering.}, language = {en} } @misc{RolinskiRammigWalzetal.2014, author = {Rolinski, Susanne and Rammig, Anja and Walz, Ariane and von Bloh, Werner and van Oijen, M. and Thonicke, Kirsten}, title = {A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch naturwissenschaftliche Reihe (487)}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch naturwissenschaftliche Reihe (487)}, number = {487}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407999}, pages = {1813 -- 1831}, year = {2014}, abstract = {Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model- based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time series and to future climate would be important next steps to test the approach.}, language = {en} } @misc{KienelWulfBowenByrneetal.2009, author = {Kienel, Ulrike and Wulf Bowen, Sabine and Byrne, Roger and Park, Jungjae and B{\"o}hnel, Harald and Dulski, Peter and Luhr, James F. and Siebert, Lee and Haug, Gerald H. and Negendank, J{\"o}rg F. W.}, title = {First lacustrine varve chronologies from Mexico}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {860}, issn = {1866-8372}, doi = {10.25932/publishup-43279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432794}, pages = {587 -- 609}, year = {2009}, abstract = {We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852-1973) and Hoya Rincn de Parangueo (AD 1839-1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutin (1943/1944) and (210)Pb ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in (13)C and (18)O, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Nio events, and positive SST anomalies. Based on our data, droughts (3-7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincn. The proxy data indicate a faster response to increased evaporation for Rincn, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation.}, language = {en} }