@phdthesis{TorresAcosta2015, author = {Torres Acosta, Ver{\´o}nica}, title = {Denudation processes in a tectonically active rift on different time scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84534}, school = {Universit{\"a}t Potsdam}, pages = {xv, ix, 183}, year = {2015}, abstract = {Continental rifts are excellent regions where the interplay between extension, the build-up of topography, erosion and sedimentation can be evaluated in the context of landscape evolution. Rift basins also constitute important archives that potentially record the evolution and migration of species and the change of sedimentary conditions as a result of climatic change. Finally, rifts have increasingly become targets of resource exploration, such as hydrocarbons or geothermal systems. The study of extensional processes and the factors that further modify the mainly climate-driven surface process regime helps to identify changes in past and present tectonic and geomorphic processes that are ultimately recorded in rift landscapes. The Cenozoic East African Rift System (EARS) is an exemplary continental rift system and ideal natural laboratory to observe such interactions. The eastern and western branches of the EARS constitute first-order tectonic and topographic features in East Africa, which exert a profound influence on the evolution of topography, the distribution and amount of rainfall, and thus the efficiency of surface processes. The Kenya Rift is an integral part of the eastern branch of the EARS and is characterized by high-relief rift escarpments bounded by normal faults, gently tilted rift shoulders, and volcanic centers along the rift axis. Considering the Cenozoic tectonic processes in the Kenya Rift, the tectonically controlled cooling history of rift shoulders, the subsidence history of rift basins, and the sedimentation along and across the rift, may help to elucidate the morphotectonic evolution of this extensional province. While tectonic forcing of surface processes may play a minor role in the low-strain rift on centennial to millennial timescales, it may be hypothesized that erosion and sedimentation processes impacted by climate shifts associated with pronounced changes in the availability in moisture may have left important imprints in the landscape. In this thesis I combined thermochronological, geomorphic field observations, and morphometry of digital elevation models to reconstruct exhumation processes and erosion rates, as well as the effects of climate on the erosion processes in different sectors of the rift. I present three sets of results: (1) new thermochronological data from the northern and central parts of the rift to quantitatively constrain the Tertiary exhumation and thermal evolution of the Kenya Rift. (2) 10Be-derived catchment-wide mean denudation rates from the northern, central and southern rift that characterize erosional processes on millennial to present-day timescales; and (3) paleo-denudation rates in the northern rift to constrain climatically controlled shifts in paleoenvironmental conditions during the early Holocene (African Humid Period). Taken together, my studies show that time-temperature histories derived from apatite fission track (AFT) analysis, zircon (U-Th)/He dating, and thermal modeling bracket the onset of rifting in the Kenya Rift between 65-50 Ma and about 15 Ma to the present. These two episodes are marked by rapid exhumation and, uplift of the rift shoulders. Between 45 and 15 Ma the margins of the rift experienced very slow erosion/exhumation, with the accommodation of sediments in the rift basin. In addition, I determined that present-day denudation rates in sparsely vegetated parts of the Kenya Rift amount to 0.13 mm/yr, whereas denudation rates in humid and more densely vegetated sectors of the rift flanks reach a maximum of 0.08 mm/yr, despite steeper hillslopes. I inferred that hillslope gradient and vegetation cover control most of the variation in denudation rates across the Kenya Rift today. Importantly, my results support the notion that vegetation cover plays a fundamental role in determining the voracity of erosion of hillslopes through its stabilizing effects on the land surface. Finally, in a pilot study I highlighted how paleo-denudation rates in climatic threshold areas changed significantly during times of transient hydrologic conditions and involved a sixfold increase in erosion rates during increased humidity. This assessment is based on cosmogenic nuclide (10Be) dating of quartzitic deltaic sands that were deposited in the northern Kenya Rift during a highstand of Lake Suguta, which was associated with the Holocene African Humid Period. Taken together, my new results document the role of climate variability in erosion processes that impact climatic threshold environments, which may provide a template for potential future impacts of climate-driven changes in surface processes in the course of Global Change.}, language = {en} } @article{BookhagenStrecker2012, author = {Bookhagen, Bodo and Strecker, Manfred}, title = {Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes}, series = {Earth \& planetary science letters}, volume = {327}, journal = {Earth \& planetary science letters}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.02.005}, pages = {97 -- 110}, year = {2012}, abstract = {The tectonic and climatic boundary conditions of the broken foreland and the orogen interior of the southern Central Andes of northwestern Argentina cause strong contrasts in elevation, rainfall, and surface-process regimes. The climatic gradient in this region ranges from the wet, windward eastern flanks (similar to 2 m/yr rainfall) to progressively drier western basins and ranges (similar to 0.1 m/yr) bordering the arid Altiplano-Puna Plateau. In this study, we analyze the impact of spatiotemporal climatic gradients on surface erosion: First, we present 41 new catchment-mean erosion rates derived from cosmogenic nuclide inventories to document spatial erosion patterns. Second, we re-evaluate paleoclimatic records from the Calchaquies basin (66 W, 26 S), a large intermontane basin bordered by high (> 4.5 km) mountain ranges, to demonstrate temporal variations in erosion rates associated with changing climatic boundary conditions during the late Pleistocene and Holocene. Three key observations in this region emphasize the importance of climatic parameters on the efficiency of surface processes in space and time: (1) First-order spatial patterns of erosion rates can be explained by a simple specific stream power (SSP) approach. We explicitly account for discharge by routing high-resolution, satellite derived rainfall. This is important as the steep climatic gradient results in a highly non-linear relation between drainage area and discharge. This relation indicates that erosion rates (ER) scale with ER similar to SSP1.4 on cosmogenic-nuclide time scales. (2) We identify an intrinsic channel-slope behavior in different climatic compartments. Channel slopes in dry areas (< 0.25 m/yr rainfall) are slightly steeper than in wet areas (> 0.75 m/yr) with equal drainage areas, thus compensating lower amounts of discharge with steeper slopes. (3) Erosion rates can vary by an order of magnitude between presently dry (similar to 0.05 mm/yr) and well-defined late Pleistocene humid (similar to 0.5 mm/yr) conditions within an intemontane basin. Overall, we document a strong climatic impact on erosion rates and channel slopes. We suggest that rainfall reaching areas with steeper channel slopes in the orogen interior during wetter climate periods results in intensified sediment mass transport, which is primarily responsible for maintaining the balance between surface uplift, erosion, sediment routing and transient storage in the orogen.}, language = {en} }