@misc{WeisshuhnMuellerWiggering2018, author = {Weisshuhn, Peter and Mueller, Felix and Wiggering, Hubert}, title = {Ecosystem Vulnerability Review}, series = {Environmental Management}, volume = {61}, journal = {Environmental Management}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0364-152X}, doi = {10.1007/s00267-018-1023-8}, pages = {904 -- 915}, year = {2018}, abstract = {To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.}, language = {en} } @article{OttoWillnerWenzetal.2017, author = {Otto, Christian and Willner, Sven N. and Wenz, Leonie and Frieler, Katja and Levermann, Anders}, title = {Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate}, series = {Journal of economic dynamics \& control}, volume = {83}, journal = {Journal of economic dynamics \& control}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-1889}, doi = {10.1016/j.jedc.2017.08.001}, pages = {232 -- 269}, year = {2017}, abstract = {World markets are highly interlinked and local economies extensively rely on global supply and value chains. Consequently, local production disruptions, for instance caused by extreme weather events, are likely to induce indirect losses along supply chains with potentially global repercussions. These complex loss dynamics represent a challenge for comprehensive disaster risk assessments. Here, we introduce the numerical agent-based model acclimate designed to analyze the cascading of economic losses in the global supply network. Using national sectors as agents, we apply the model to study the global propagation of losses induced by stylized disasters. We find that indirect losses can become comparable in size to direct ones, but can be efficiently mitigated by warehousing and idle capacities. Consequently, a comprehensive risk assessment cannot focus solely on first-tier suppliers, but has to take the whole supply chain into account. To render the supply network climate-proof, national adaptation policies have to be complemented by international adaptation efforts. In that regard, our model can be employed to assess reasonable leverage points and to identify dynamic bottlenecks inaccessible to static analyses. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{YairBryanLaveeetal.2013, author = {Yair, Aaron and Bryan, Rorke B. and Lavee, Hanoch and Schwanghart, Wolfgang and Kuhn, Nikolaus J.}, title = {The resilience of a badland area to climate change in an arid environment}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {106}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2012.04.006}, pages = {12 -- 21}, year = {2013}, abstract = {Badlands have long been considered as model landscapes due to their perceived close relationship between form and process. The often intense features of erosion have also attracted many geomorphologists because the associated high rates of erosion appeared to offer the opportunity for studying surface processes and the resulting forms. Recently, the perceived simplicity of badlands has been questioned because the expected relationships between driving forces for erosion and the resulting sediment yield could not be observed. Further, a high variability in erosion and sediment yield has been observed across scales. Finally, denudation based on currently observed erosion rates would have lead to the destruction of most badlands a long time ago. While the perceived simplicity of badlands has sparked a disproportional (compared to the land surface they cover) amount of research, our increasing amount of information has not necessarily increased our understanding of badlands in equal terms. Overall, badlands appear to be more complex than initially assumed. In this paper, we review 40 years of research in the Zin Valley Badlands in Israel to reconcile some of the conflicting results observed there and develop a perspective on the function of badlands as model landscapes. While the data collected in the Zin Valley clearly confirm that spatial and temporal patterns of geomorphic processes and their interaction with topography and surface properties have to be understood, we still conclude that the process of realizing complexity in the "simple" badlands has a model function both for our understanding as well as perspective on all landscape systems.}, language = {en} }