@article{TeasdalevanDoornFiddymentetal.2015, author = {Teasdale, Matthew David and van Doorn, N. L. and Fiddyment, S. and Webb, C. C. and Hofreiter, Michael and Collins, Matthew J. and Bradley, Daniel G.}, title = {Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {370}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1660}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2013.0379}, pages = {7}, year = {2015}, abstract = {Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4\% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5\%. Over 45\% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7\% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock.}, language = {en} } @article{TedderCarleialGolebiewskaetal.2015, author = {Tedder, Andrew and Carleial, Samuel and Golebiewska, Martyna and Kappel, Christian and Shimizu, Kentaro K. and Stift, Marc}, title = {Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae)}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {6}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0126618}, pages = {17}, year = {2015}, abstract = {Introduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.}, language = {en} } @article{ThieleGrimm2015, author = {Thiele, Jan C. and Grimm, Volker}, title = {Replicating and breaking models: good for you and good for ecology}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02170}, pages = {691 -- 696}, year = {2015}, abstract = {There are two major limitations to the potential of computational models in ecology for producing general insights: their design is path-dependent, reflecting different underlying questions, assumptions, and data, and there is too little robustness analysis exploring where the model mechanisms explaining certain observations break down. We here argue that both limitations could be overcome if modellers in ecology would more often replicate existing models, try to break the models, and explore modifications. Replication comprises the re-implementation of an existing model and the replication of its results. Breaking models means to identify under what conditions the mechanisms represented in a model can no longer explain observed phenomena. The benefits of replication include less effort being spent to enter the iterative stage of model development and having more time for systematic robustness analysis. A culture of replication would lead to increased credibility, coherence and efficiency of computational modelling and thereby facilitate theory development.}, language = {en} } @article{ToppingAlroeFarrelletal.2015, author = {Topping, Christopher J. and Alroe, Hugo Fjelsted and Farrell, Katharine N. and Grimm, Volker}, title = {Per Aspera ad Astra: Through Complex Population Modeling to Predictive Theory}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {186}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {5}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/683181}, pages = {669 -- 674}, year = {2015}, abstract = {Population models in ecology are often not good at predictions, even if they are complex and seem to be realistic enough. The reason for this might be that Occam's razor, which is key for minimal models exploring ideas and concepts, has been too uncritically adopted for more realistic models of systems. This can tic models too closely to certain situations, thereby preventing them from predicting the response to new conditions. We therefore advocate a new kind of parsimony to improve the application of Occam's razor. This new parsimony balances two contrasting strategies for avoiding errors in modeling: avoiding inclusion of nonessential factors (false inclusions) and avoiding exclusion of sometimes-important factors (false exclusions). It involves a synthesis of traditional modeling and analysis, used to describe the essentials of mechanistic relationships, with elements that arc included in a model because they have been reported to be or can arguably be assumed to be important under certain conditions. The resulting models should be able to reflect how the internal organization of populations change and thereby generate representations of the novel behavior necessary for complex predictions, including regime shifts.}, language = {en} } @article{ValentePhillimoreEtienne2015, author = {Valente, Luis M. and Phillimore, Albert B. and Etienne, Rampal S.}, title = {Equilibrium and non-equilibrium dynamics simultaneously operate in the Gal{\´a}pagos islands}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1461-0248}, doi = {10.1111/ele.12461}, pages = {844 -- 852}, year = {2015}, abstract = {Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Gal{\´a}pagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Gal{\´a}pagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.}, language = {en} } @article{vanGervenBredervelddeKleinetal.2015, author = {van Gerven, Luuk P. A. and Brederveld, Robert J. and de Klein, Jeroen J. M. and DeAngelis, Don L. and Downing, Andrea S. and Faber, Michiel and Gerla, Daan J. and Janse, Jan H. and Janssen, Annette B. G. and Jeuken, Michel and Kooi, Bob W. and Kuiper, Jan J. and Lischke, Betty and Liu, Sien and Petzoldt, Thomas and Schep, Sebastiaan A. and Teurlincx, Sven and Thiange, Christophe and Trolle, Dennis and van Nes, Egbert H. and Mooij, Wolf M.}, title = {Advantages of concurrent use of multiple software frameworks in water quality modelling using a database approach}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {186}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {1-2}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/fal/2015/0631}, pages = {5 -- 20}, year = {2015}, abstract = {Water quality modelling deals with multidisciplinary questions ranging from fundamental to applied. Addressing this broad range of questions requires multiple analysis techniques and therefore multiple frameworks. Through the recently developed database approach to modelling (DATM), it has become possible to run a model in multiple software frameworks without much overhead. Here we apply DATM to the ecosystem model for ditches PCDitch and its twin model for shallow lakes PCLake. Using DATM, we run these models in six frameworks (ACSL, DELWAQ, DUFLOW, GRIND for MATLAB, OSIRIS and R), and report on the possible model analyses with tools provided by each framework. We conclude that the dynamic link between frameworks and models resulting from DATM has the following main advantages: it allows one to use the framework one is familiar with for most model analyses and eases switching between frameworks for complementary model analyses, including the switch between a 0-D and 1-D to 3-D setting. Moreover, the strength of each framework - including runtime performance - can now be easily exploited. We envision that a community-based further development of the concept can contribute to the future development of water quality modelling, not only by addressing multidisciplinary questions but also by facilitating the exchange of models and process formulations within the community of water quality modellers.}, language = {en} } @article{vanKleunenDawsonEssletal.2015, author = {van Kleunen, Mark and Dawson, Wayne and Essl, Franz and Pergl, Jan and Winter, Marten and Weber, Ewald and Kreft, Holger and Weigelt, Patrick and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco J. and Cardenas, Dairon and Cardenas-Toro, Juliana and Castano, Nicolas and Chacon, Eduardo and Chatelain, Cyrille and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Meerman, Jan and Morozova, Olga and Moser, Dietmar and Nickrent, Daniel L. and Patzelt, Annette and Pelser, Pieter B. and Baptiste, Maria P. and Poopath, Manop and Schulze, Maria and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Wieringa, Jan J. and Pysek, Petr}, title = {Global exchange and accumulation of non-native plants}, series = {Nature : the international weekly journal of science}, volume = {525}, journal = {Nature : the international weekly journal of science}, number = {7567}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14910}, pages = {100 -- +}, year = {2015}, abstract = {All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch(1,2) is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage(3). So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9\% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.}, language = {en} } @article{VenailGrossOakleyetal.2015, author = {Venail, Patrick and Gross, Kevin and Oakley, Todd H. and Narwani, Anita and Allan, Eric and Flombaum, Pedro and Isbell, Forest and Joshi, Jasmin Radha and Reich, Peter B. and Tilman, David and van Ruijven, Jasper and Cardinale, Bradley J.}, title = {Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {29}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/1365-2435.12432}, pages = {615 -- 626}, year = {2015}, abstract = {Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR.Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.}, language = {en} } @article{WackerMarzetzSpijkerman2015, author = {Wacker, Alexander and Marzetz, Vanessa and Spijkerman, Elly}, title = {Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {9}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1915.1}, pages = {2467 -- 2477}, year = {2015}, abstract = {The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels.}, language = {en} } @article{WackerPiephoSpijkerman2015, author = {Wacker, Alexander and Piepho, Maike and Spijkerman, Elly}, title = {Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability}, series = {European journal of phycology}, volume = {50}, journal = {European journal of phycology}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0967-0262}, doi = {10.1080/09670262.2015.1050068}, pages = {288 -- 300}, year = {2015}, abstract = {Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (P-max), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of P-max with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between P-max and light. In Chl. globosa, lower light coincided with higher PUFAs and lower P-max, but PCA also indicated that PUFAs had no direct influence on P-max. PUFAs and P-max were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation.}, language = {en} } @article{WangTohgeIvakovetal.2015, author = {Wang, Ting and Tohge, Takayuki and Ivakov, Alexander and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair and Mutwil, Marek and Schippers, Jos H. M. and Persson, Staffan}, title = {Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00962}, pages = {1027 -- +}, year = {2015}, abstract = {Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance.}, language = {en} } @article{WannickeFrindteGustetal.2015, author = {Wannicke, Nicola and Frindte, Katharina and Gust, Giselher and Liskow, Iris and Wacker, Alexander and Meyer, Andreas and Grossart, Hans-Peter}, title = {Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study}, series = {FEMS microbiology ecology}, volume = {91}, journal = {FEMS microbiology ecology}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0168-6496}, doi = {10.1093/femsec/fiv036}, pages = {15}, year = {2015}, abstract = {In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 +/- 1.4 and 3.9 +/- 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 +/- 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 +/- 1.5 and 2.9 +/- 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.}, language = {en} } @article{WeithoffRochaGaedke2015, author = {Weithoff, Guntram and Rocha, Marcia R. and Gaedke, Ursula}, title = {Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure}, series = {Freshwater biology}, volume = {60}, journal = {Freshwater biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.12527}, pages = {758 -- 767}, year = {2015}, abstract = {In most biodiversity studies, taxonomic diversity is the measure for the multiplicity of species and is often considered to represent functional diversity. However, trends in taxonomic diversity and functional diversity may differ, for example, when many functionally similar but taxonomically different species co-occur in a community. The differences between these diversity measures are of particular interest in diversity research for understanding diversity patterns and their underlying mechanisms. We analysed a temporally highly resolved 20-year time series of lake phytoplankton to determine whether taxonomic diversity and functional diversity exhibit similar or contrasting seasonal patterns. We also calculated the functional mean of the community in n-dimensional trait space for each sampling day to gain further insights into the seasonal dynamics of the functional properties of the community. We found an overall weak positive relationship between taxonomic diversity and functional diversity with a distinct seasonal pattern. The two diversity measures showed synchronous behaviour from early spring to mid-summer and a more complex and diverging relationship from autumn to late winter. The functional mean of the community exhibited a recurrent annual pattern with the most prominent changes before and after the clear-water phase. From late autumn to winter, the functional mean of the community and functional diversity were relatively constant while taxonomic diversity declined, suggesting competitive exclusion during this period. A further decline in taxonomic diversity concomitant with increasing functional diversity in late winter to early spring is seen as a result of niche diversification together with competitive exclusion. Under these conditions, several different sets of traits are suitable to thrive, but within one set of functional traits only one, or very few, morphotypes can persist. Taxonomic diversity alone is a weak descriptor of trait diversity in phytoplankton. However, the combined analysis of taxonomic diversity and functional diversity, along with the functional mean of the community, allows for deeper insights into temporal patterns of community assembly and niche diversification.}, language = {en} } @article{WeissJeltsch2015, author = {Weiß, Lina and Jeltsch, Florian}, title = {The response of simulated grassland communities to the cessation of grazing}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {303}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2015.02.002}, pages = {1 -- 11}, year = {2015}, abstract = {Changes in land-use are supposed to be among the severest prospective threats to plant diversity worldwide. In semi-natural temperate grasslands, the cessation of traditional land use like livestock grazing is considered to be one of the most important drivers of the diversity loss witnessed within the last decades. Despite of the enormous number of studies on successional pathways following grazing abandonment there is no general pattern of how grassland communities are affected in terms of diversity, trait composition and pace of succession. To gain a comprehensive picture is difficult given the heterogeneity of environments and the time and effort needed for long-term investigations. We here use a proven individual- and trait-based grassland community model to analyze short- and long-term consequences of grazing abandonment under different assumptions of resource availability, pre-abandonment grazing intensity and regional isolation of communities. Grazing abandonment led to a decrease of plant functional type (PFT) diversity in all but two scenarios in the long-term. In short-term we also found an increase or no change in Shannon diversity for several scenarios. With grazing abandonment we overall found an increase in maximum plant mass, clonal integration and longer lateral spread, a decrease in rosette plant types and in stress tolerant plants, as well as an increase in grazing tolerant and a decrease in grazing avoiding plant types. Observed changes were highly dependent on the regional configuration of communities, prevalent resource conditions and land use intensity before abandonment. While long-term changes took around 10-20 years in resource rich conditions, new equilibria established in resource poor conditions only after 30-40 years. Our results confirm the potential threats caused by recent land-use changes and the assumption that oligotrophic communities are more resistant than mesotrophic communities also for long-term abandonment. Moreover, results revealed that species-rich systems are not per se more resistant than species-poor grasslands. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{YildirimSemerciBenayahuAdamovskietal.2015, author = {Yildirim-Semerci, Cigdem and Benayahu, Dafna and Adamovski, Miriam and Wollenberger, Ursula}, title = {An Electrochemical Assay for Monitoring Differentiation of the Osteoblastic Cell Line (MBA-15) on the Sensor Chip}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {27}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201400684}, pages = {1350 -- 1358}, year = {2015}, abstract = {An electrochemical assay for the indication of the activity of the cell bound differentiation marker alkaline phosphatase (ALP) is proposed using voltammetry on an in-vitro cell culture. The basis of the assay is cultivation of cells on gold microelectrodes in wells of a microplate, catalytic hydrolysis of p-aminophenyl phosphate by ALP and indication of p-aminophenol oxidation by square wave voltammetry (SWV) with the sensors onto which the cells attached. The morphology of the bone marrow stromal cell line (MBA-15) on the electrode surface was investigated and it exhibited in vitro osteogenic characteristics. Since ALP is expressed on the cell surface in early differentiation stage of osteoblastic cells, its activity was followed after different culture times over a period of 144 h by recording repetitive voltammograms at different time points upon addition of the substrate p-aminophenyl phosphate. The ALP activity was estimated from the signal increase related to formation rate of p-aminophenol and the number of cells. The highest value was measured at 120 h, when the cells reached confluence. The results of the electrochemical activity assay are consistent with the colorimetric acquired value from p-nitrophenol formation rate.}, language = {en} } @article{ZengLeimkuehlerKoetzetal.2015, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode}, series = {ACS applied materials \& interfaces}, volume = {7}, journal = {ACS applied materials \& interfaces}, number = {38}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.5b06665}, pages = {21487 -- 21494}, year = {2015}, abstract = {The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.}, language = {en} } @article{ZengPankratovFalketal.2015, author = {Zeng, Ting and Pankratov, Dmitry and Falk, Magnus and Leimk{\"u}hler, Silke and Shleev, Sergey and Wollenberger, Ursula}, title = {Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {66}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2014.10.080}, pages = {39 -- 42}, year = {2015}, abstract = {A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZhangHankeGogokhiaJiangetal.2015, author = {Zhang, Houbin and Hanke-Gogokhia, Christin and Jiang, Li and Li, Xiaobo and Wang, Pu and Gerstner, Cecilia D. and Frederick, Jeanne M. and Yang, Zhenglin and Baehr, Wolfgang}, title = {Mistrafficking of prenylated proteins causes retinitis pigmentosa 2}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {3}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.14-257915}, pages = {932 -- 942}, year = {2015}, abstract = {The retinitis pigmentosa 2 polypeptide (RP2) functions as a GTPase-activating protein (GAP) for ARL3 (Arf-like protein 3), a small GTPase. ARL3 is an effector of phosphodiesterase 6 Delta (PDE6D), a prenyl-binding protein and chaperone of prenylated protein in photoreceptors. Mutations in the human RP2 gene cause X-linked retinitis pigmentosa (XLRP) and cone-rod dystrophy (XL-CORD). To study mechanisms causing XLRP, we generated an RP2 knockout mouse. The RP2h(-/-) mice exhibited a slowly progressing rod-cone dystrophy simulating the human disease. RP2h(-/-) scotopic a-wave and photopic b-wave amplitudes declined at 1 mo of age and continued to decline over the next 6 mo. Prenylated PDE6 subunits and G-protein coupled receptor kinase 1 (GRK1) were unable to traffic effectively to the RP2h(-/-) outer segments. Mechanistically, absence of RP2 GAP activity increases ARL3-GTP levels, forcing PDE6D to assume a predominantly "closed" conformation that impedes binding of lipids. Lack of interaction disrupts trafficking of PDE6 and GRK1 to their destination, the photoreceptor outer segments. We propose that hyperactivity of ARL3-GTP in RP2 knockout mice and human patients with RP2 null alleles leads to XLRP resembling recessive rod-cone dystrophy.}, language = {en} } @article{ZurellEggersKaatzetal.2015, author = {Zurell, Damaris and Eggers, Ute and Kaatz, Michael and Rotics, Shay and Sapir, Nir and Wikelski, Martin and Nathan, Ran and Jeltsch, Florian}, title = {Individual-based modelling of resource competition to predict density-dependent population dynamics: a case study with white storks}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.01294}, pages = {319 -- 330}, year = {2015}, abstract = {Density regulation influences population dynamics through its effects on demographic rates and consequently constitutes a key mechanism explaining the response of organisms to environmental changes. Yet, it is difficult to establish the exact form of density dependence from empirical data. Here, we developed an individual-based model to explore how resource limitation and behavioural processes determine the spatial structure of white stork Ciconia ciconia populations and regulate reproductive rates. We found that the form of density dependence differed considerably between landscapes with the same overall resource availability and between home range selection strategies, highlighting the importance of fine-scale resource distribution in interaction with behaviour. In accordance with theories of density dependence, breeding output generally decreased with density but this effect was highly variable and strongly affected by optimal foraging strategy, resource detection probability and colonial behaviour. Moreover, our results uncovered an overlooked consequence of density dependence by showing that high early nestling mortality in storks, assumed to be the outcome of harsh weather, may actually result from density dependent effects on food provision. Our findings emphasize that accounting for interactive effects of individual behaviour and local environmental factors is crucial for understanding density-dependent processes within spatially structured populations. Enhanced understanding of the ways animal populations are regulated in general, and how habitat conditions and behaviour may dictate spatial population structure and demographic rates is critically needed for predicting the dynamics of populations, communities and ecosystems under changing environmental conditions.}, language = {en} } @article{UestuenBartetzkoBoernke2015, author = {{\"U}st{\"u}n, Suayib and Bartetzko, Verena and B{\"o}rnke, Frederik}, title = {The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00599}, pages = {11}, year = {2015}, abstract = {XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.}, language = {en} }