@phdthesis{Prokopović2016, author = {Prokopović, Vladimir Z.}, title = {Light-triggered release of bioactive compounds from HA/PLL multilayer films for stimulation of cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97927}, school = {Universit{\"a}t Potsdam}, pages = {91}, year = {2016}, abstract = {The concept of targeting cells and tissues by controlled delivery of molecules is essential in the field of biomedicine. The layer-by-layer (LbL) technology for the fabrication of polymer multilayer films is widely implemented as a powerful tool to assemble tailor-made materials for controlled drug delivery. The LbL films can as well be engineered to act as mimics of the natural cellular microenvironment. Thus, due to the myriad possibilities such as controlled cellular adhesion and drug delivery offered by LbL films, it becomes easily achievable to direct the fate of cells by growing them on the films. The aim of this work was to develop an approach for non-invasive and precise control of the presentation of bioactive molecules to cells. The strategy is based on employment of the LbL films, which function as support for cells and at the same time as reservoirs for bioactive molecules to be released in a controlled manner. UV light is used to trigger the release of the stored ATP with high spatio-temporal resolution. Both physico-chemical (competitive intermolecular interactions in the film) and biological aspects (cellular response and viability) are addressed in this study. Biopolymers hyaluronic acid (HA) and poly-L-lysine (PLL) were chosen as the building blocks for the LbL film assembly. Poor cellular adhesion to native HA/PLL films as well as significant degradation by cells within a few days were shown. However, coating the films with gold nanoparticles not only improved cellular adhesion and protected the films from degradation, but also formed a size-exclusion barrier with adjustable cut-off in the size range of a few tens of kDa. The films were shown to have high reservoir capacity for small charged molecules (reaching mM levels in the film). Furthermore, they were able to release the stored molecules in a sustained manner. The loading and release are explained by a mechanism based on interactions between charges of the stored molecules and uncompensated charges of the biopolymers in the film. Charge balance and polymer dynamics in the film play the pivotal role. Finally, the concept of light-triggered release from the films has been proven using caged ATP loaded into the films from which ATP was released on demand. ATP induces a fast cellular response, i.e. increase in intracellular [Ca2+], which was monitored in real-time. Limitations of the cellular stimulation by the proposed approach are highlighted by studying the stimulation as a function of irradiation parameters (time, distance, light power). Moreover, caging molecules bind to the film stronger than ATP does, which opens new perspectives for the use of the most diverse chemical compounds as caging molecules. Employment of HA/PLL films as a nouvelle support for cellular growth and hosting of bioactive molecules, along with the possibility to stimulate individual cells using focused light renders this approach highly efficient and unique in terms of precision and spatio-temporal resolution among those previously described. With its high potential, the concept presented herein provides the foundation for the design of new intelligent materials for single cell studies, with the focus on tissue engineering, diagnostics, and other cell-based applications.}, language = {en} } @phdthesis{Šustr2020, author = {Šustr, David}, title = {Molecular diffusion in polyelectrolyte multilayers}, doi = {10.25932/publishup-48903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489038}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2020}, abstract = {Research on novel and advanced biomaterials is an indispensable step towards their applications in desirable fields such as tissue engineering, regenerative medicine, cell culture, or biotechnology. The work presented here focuses on such a promising material: polyelectrolyte multilayer (PEM) composed of hyaluronic acid (HA) and poly(L-lysine) (PLL). This gel-like polymer surface coating is able to accumulate (bio-)molecules such as proteins or drugs and release them in a controlled manner. It serves as a mimic of the extracellular matrix (ECM) in composition and intrinsic properties. These qualities make the HA/PLL multilayers a promising candidate for multiple bio-applications such as those mentioned above. The work presented aims at the development of a straightforward approach for assessment of multi-fractional diffusion in multilayers (first part) and at control of local molecular transport into or from the multilayers by laser light trigger (second part). The mechanism of the loading and release is governed by the interaction of bioactives with the multilayer constituents and by the diffusion phenomenon overall. The diffusion of a molecule in HA/PLL multilayers shows multiple fractions of different diffusion rate. Approaches, that are able to assess the mobility of molecules in such a complex system, are limited. This shortcoming motivated the design of a novel evaluation tool presented here. The tool employs a simulation-based approach for evaluation of the data acquired by fluorescence recovery after photobleaching (FRAP) method. In this approach, possible fluorescence recovery scenarios are primarily simulated and afterwards compared with the data acquired while optimizing parameters of a model until a sufficient match is achieved. Fluorescent latex particles of different sizes and fluorescein in an aqueous medium are utilized as test samples validating the analysis results. The diffusion of protein cytochrome c in HA/PLL multilayers is evaluated as well. This tool significantly broadens the possibilities of analysis of spatiotemporal FRAP data, which originate from multi-fractional diffusion, while striving to be widely applicable. This tool has the potential to elucidate the mechanisms of molecular transport and empower rational engineering of the drug release systems. The second part of the work focuses on the fabrication of such a spatiotemporarily-controlled drug release system employing the HA/PLL multilayer. This release system comprises different layers of various functionalities that together form a sandwich structure. The bottom layer, which serves as a reservoir, is formed by HA/PLL PEM deposited on a planar glass substrate. On top of the PEM, a layer of so-called hybrids is deposited. The hybrids consist of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) -based hydrogel microparticles with surface-attached gold nanorods. The layer of hybrids is intended to serve as a gate that controls the local molecular transport through the PEM-solution-interface. The possibility of stimulating the molecular transport by near-infrared (NIR) laser irradiation is being explored. From several tested approaches for the deposition of hybrids onto the PEM surface, the drying-based approach was identified as optimal. Experiments, that examine the functionality of the fabricated sandwich at elevated temperature, document the reversible volume phase transition of the PEM-attached hybrids while sustaining the sandwich stability. Further, the gold nanorods were shown to effectively absorb light radiation in the tissue- and cell-friendly NIR spectral region while transducing the energy of light into heat. The rapid and reversible shrinkage of the PEM-attached hybrids was thereby achieved. Finally, dextran was employed as a model transport molecule. It loads into the PEM reservoir in a few seconds with the partition constant of 2.4, while it spontaneously releases in a slower, sustained manner. The local laser irradiation of the sandwich, which contains the fluorescein isothiocyanate tagged dextran, leads to a gradual reduction of fluorescence intensity in the irradiated region. The release system fabricated employs renowned photoresponsivity of the hybrids in an innovative setting. The results of the research are a step towards a spatially-controlled on-demand drug release system that paves the way to spatiotemporally controlled drug release. The approaches developed in this work have the potential to elucidate the molecular dynamics in ECM and to foster engineering of multilayers with properties tuned to mimic the ECM. The work aims at spatiotemporal control over the diffusion of bioactives and their presentation to the cells.}, language = {en} }