@article{VazdaCruzBuechnerFondelletal.2022, author = {Vaz da Cruz, Vinicius and B{\"u}chner, Robby and Fondell, Mattis and Pietzsch, Annette and Eckert, Sebastian and F{\"o}hlisch, Alexander}, title = {Targeting individual tautomers in equilibrium by resonant inelastic X-ray scattering}, series = {The journal of physical chemistry letters}, volume = {13}, journal = {The journal of physical chemistry letters}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.1c03453}, pages = {2459 -- 2466}, year = {2022}, abstract = {Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the pi and sigma manifolds at the proton-transfer site.}, language = {en} } @article{EckertMascarenhasMitzneretal.2022, author = {Eckert, Sebastian and Mascarenhas, Eric Johnn and Mitzner, Rolf and Jay, Raphael Martin and Pietzsch, Annette and Fondell, Mattis and Vaz da Cruz, Vinicius and F{\"o}hlisch, Alexander}, title = {From the free ligand to the transition metal complex}, series = {Inorganic chemistry}, volume = {61}, journal = {Inorganic chemistry}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.2c00789}, pages = {10321 -- 10328}, year = {2022}, abstract = {Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal- ligand bond formation are probed through distinct spectroscopic signatures.}, language = {en} }