@article{ZhangCasertaYarmanetal.2021, author = {Zhang, Xiaorong and Caserta, Giorgio and Yarman, Aysu and Supala, Eszter and Tadjoung Waffo, Armel Franklin and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Zebger, Ingo and Scheller, Frieder W.}, title = {"Out of Pocket" protein binding}, series = {Chemosensors}, volume = {9}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors9060128}, pages = {13}, year = {2021}, abstract = {The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.}, language = {en} } @article{SalzmannWierzbaGeorgi2023, author = {Salzmann, Martin and Wierzba, Marta and Georgi, Doreen}, title = {Condition C in German A'-movement}, series = {Journal of linguistics : JL}, volume = {59}, journal = {Journal of linguistics : JL}, number = {3}, publisher = {Cambridge Univ. Press}, address = {London [u.a.]}, issn = {0022-2267}, doi = {10.1017/S0022226722000214}, pages = {577 -- 622}, year = {2023}, abstract = {In recent experimental work, arguments for or against Condition C reconstruction in A'-movement have been based on low/high availability of coreference in sentences with and without A'-movement. We argue that this reasoning is problematic: It involves arbitrary thresholds, and the results are potentially confounded by the different surface orders of the compared structures and non-syntactic factors. We present three experiments with designs that do not require defining thresholds of 'low' or 'high' coreference values. Instead, we focus on grammatical contrasts (wh-movement vs. relativization, subject vs. object wh-movement) and aim to identify and reduce confounds. The results show that reconstruction for A'-movement of DPs is not very robust in German, contra previous findings. Our results are compatible with the view that the surface order and non-syntactic factors (e.g. plausibility, referential accessibility of an R-expression) heavily influence coreference possibilities. Thus, the data argue against a theory that includes both reconstruction and a hard Condition C constraint. There is a residual contrast between sentences with subject/object movement, which is compatible with an account without reconstruction (and an additional non-syntactic factor) or an account with reconstruction (and a soft Condition C constraint).}, language = {en} } @article{PattersonTrompeltFelser2014, author = {Patterson, Clare and Trompelt, Helena and Felser, Claudia}, title = {The online application of binding condition B in native and non-native pronoun resolution}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.00147}, pages = {16}, year = {2014}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{ChoiSchmidtTinnefeldetal.2019, author = {Choi, Youngeun and Schmidt, Carsten and Tinnefeld, Philip and Bald, Ilko and R{\"o}diger, Stefan}, title = {A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads}, series = {Scientific Reports}, journal = {Scientific Reports}, number = {9}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-41136-x}, pages = {8}, year = {2019}, abstract = {The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters.}, language = {en} }