@article{KlausKleinebeckerPratietal.2013, author = {Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and Lange, Markus and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Pasalic, Esther and Renner, Swen C. and Socher, Stephanie A. and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Fischer, Markus and H{\"o}lzel, Norbert}, title = {Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {177}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.019}, pages = {1 -- 9}, year = {2013}, abstract = {Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.}, language = {en} } @article{HeroldSchoeningGutknechtetal.2014, author = {Herold, Nadine and Sch{\"o}ning, Ingo and Gutknecht, Jessica and Alt, Fabian and Boch, Steffen and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Socher, Stephanie A. and Wilcke, Wolfgang and Wubet, Tesfaye and Schrumpf, Marion}, title = {Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany}, series = {Applied soil ecology : a section of agriculture, ecosystems \& environment}, volume = {73}, journal = {Applied soil ecology : a section of agriculture, ecosystems \& environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0929-1393}, doi = {10.1016/j.apsoil.2013.07.009}, pages = {41 -- 50}, year = {2014}, abstract = {There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60\% of variation in PLFA data and 81\% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34\%) and enzyme activities (60\%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale.}, language = {en} }