@article{LachmairFischerGerjets2022, author = {Lachmair, Martin and Fischer, Martin H. and Gerjets, Peter}, title = {Action-control mappings of interfaces in virtual reality: a study of embodied interaction}, series = {Frontiers in virtual reality}, volume = {3}, journal = {Frontiers in virtual reality}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2673-4192}, doi = {10.3389/frvir.2022.976849}, pages = {11}, year = {2022}, abstract = {The development of interface technologies is driven by the goal of making interaction more positive through natural action-control mappings. In Virtual Reality (VR), the entire body is potentially involved for interaction, using such mappings with a maximum of degrees of freedom. The downside is the increase in interaction complexity, which can dramatically influence interface design. A cognitive perspective on detailed aspects of interaction patterns is lacking in common interface design guidelines, although it can be helpful to make this complexity controllable and, thus, make interaction behavior predictable. In the present study, the distinction between grounding, embodiment, and situatedness (the GES framework) is applied to organize aspects of interactions and to compare them with each other. In two experiments, zooming into or out of emotional pictures through changes of arm span was examined in VR. There are qualitatively different aspects during such an interaction: i) perceptual aspects caused by zooming are fundamental for human behavior (Grounding: closer objects appear bigger) and ii) aspects of gestures correspond to the physical characteristics of the agents (Embodiment: little distance of hands signals little or, in contrast, "creating more detail"). The GES-framework sets aspects of Grounding against aspects of Embodiment, thus allowing to predict human behavior regarding these qualitatively different aspects. For the zooming procedure, the study shows that Grounding can overrule Embodiment in interaction design. Thus, we propose GES as a cognitive framework that can help to inform interaction guidelines for user interface design in VR.}, language = {en} } @article{MyachykovChapmanFischer2017, author = {Myachykov, Andriy and Chapman, Ashley J. and Fischer, Martin H.}, title = {Cross-representational interactions}, series = {Frontiers in psychology}, volume = {7}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, pages = {7}, year = {2017}, abstract = {A crucial question facing cognitive science concerns the nature of conceptual representations as well as the constraints on the interactions between them. One specific question we address in this paper is what makes cross-representational interplay possible? We offer two distinct theoretical scenarios: according to the first scenario, co-activated knowledge representations interact with the help of an interface established between them via congruent activation in a mediating third-party general cognitive mechanism, e.g., attention. According to the second scenario, co-activated knowledge representations interact due to an overlap between their features, for example when they share a magnitude component. First, we make a case for cross representational interplay based on grounded and situated theories of cognition. Second, we discuss interface-based interactions between distinct (i.e., non-overlapping) knowledge representations. Third, we discuss how co-activated representations may share their architecture via partial overlap. Finally, we outline constraints regarding the flexibility of these proposed mechanisms.}, language = {en} } @article{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic: evidence from eye movements on a blank screen}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00012}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} }