@article{GiulbudagianHoenzkeBergueiroetal.2018, author = {Giulbudagian, Michael and H{\"o}nzke, Stefan and Bergueiro, Juli{\´a}n and I{\c{s}}{\i}k, Doğu{\c{s}} and Schumacher, Fabian and Saeidpour, Siavash and Lohan, Silke and Meinke, Martina and Teutloff, Christian and Sch{\"a}fer-Korting, Monika and Yealland, Guy and Kleuser, Burkhard and Hedtrich, Sarah and Calder{\´o}n, Marcelo}, title = {Enhanced topical delivery of dexamethasone by beta-cyclodextrin decorated thermoresponsive nanogels}, series = {Nanoscale}, volume = {10}, journal = {Nanoscale}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr04480a}, pages = {469 -- 479}, year = {2018}, abstract = {Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream.}, language = {en} } @article{KaufmannDuffusMitrovaetal.2018, author = {Kaufmann, Hans Paul and Duffus, Benjamin R. and Mitrova, Biljana and Iobbi-Nivol, Chantal and Teutloff, Christian and Nimtz, Manfred and Jaensch, Lothar and Wollenberger, Ulla and Leimk{\"u}hler, Silke}, title = {Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamie N-Oxide Reductase}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b01108}, pages = {1130 -- 1143}, year = {2018}, abstract = {The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.}, language = {en} } @article{KaufmannDuffusTeutloffetal.2018, author = {Kaufmann, Paul and Duffus, Benjamin R. and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.8b00128}, pages = {2889 -- 2901}, year = {2018}, abstract = {The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H-2 to protons and electrons. Despite the close to atomic resolution structure (1.1 angstrom), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H-2 oxidation of Mo/Cu-dependent CODHs in the future.}, language = {en} } @inproceedings{DuffusHartmannTeutloffetal.2019, author = {Duffus, Benjamin R. and Hartmann, Tobias and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Refining catalytic insights toward the chemical mechanism of R. capsulatus formate dehydrogenase via EPR spectroscopy}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {257}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2019}, language = {en} } @article{ReschkeDuffusSchrapersetal.2019, author = {Reschke, Stefan and Duffus, Benjamin R. and Schrapers, Peer and Mebs, Stefan and Teutloff, Christian and Dau, Holger and Haumann, Michael and Leimk{\"u}hler, Silke}, title = {Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.9b00078}, pages = {2228 -- 2242}, year = {2019}, abstract = {The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.}, language = {en} } @article{HahnEngelhardReschkeetal.2015, author = {Hahn, Aaron and Engelhard, Christopher and Reschke, Stefan and Teutloff, Christian and Bittl, Robert and Leimk{\"u}hler, Silke and Risse, Thomas}, title = {Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site-Directed Spin Labeling}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201504772}, pages = {11865 -- 11869}, year = {2015}, abstract = {Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain. A flap-like movement of the loop provides access to the Moco binding-pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo-hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation.}, language = {en} } @article{HartmannTeraoGarattinietal.2012, author = {Hartmann, Tobias and Terao, Mineko and Garattini, Enrico and Teutloff, Christian and Alfaro, Joshua F. and Jones, Jeffrey P. and Leimk{\"u}hler, Silke}, title = {The impact of single nucleotide polymorphisms on human aldehyde oxidase}, series = {Drug metabolism and disposition : the biological fate of chemicals}, volume = {40}, journal = {Drug metabolism and disposition : the biological fate of chemicals}, number = {5}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {0090-9556}, doi = {10.1124/dmd.111.043828}, pages = {856 -- 864}, year = {2012}, abstract = {Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N-1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95\% and a yield of 50 mu g/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.}, language = {en} } @article{MahroBrasCerqueiraetal.2013, author = {Mahro, Martin and Bras, Natercia F. and Cerqueira, Nuno M. F. S. A. and Teutloff, Christian and Coelho, Catarina and Romao, Maria Joao and Leimk{\"u}hler, Silke}, title = {Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0082285}, pages = {12}, year = {2013}, abstract = {In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.}, language = {en} }