@article{RamiaramanantsoaMoffatHarmonetal.2018, author = {Ramiaramanantsoa, Tahina and Moffat, Anthony F. J. and Harmon, Robert and Ignace, R. and St-Louis, Nicole and Vanbeveren, Dany and Shenar, Tomer and Pablo, Herbert and Richardson, Noel D. and Howarth, Ian D. and Stevens, Ian R. and Piaulet, Caroline and St-Jean, Lucas and Eversberg, Thomas and Pigulski, Andrzej and Popowicz, Adam and Kuschnig, Rainer and Zoclonska, Elzbieta and Buysschaert, Bram and Handler, Gerald and Weiss, Werner W. and Wade, Gregg A. and Rucinski, Slavek M. and Zwintz, Konstanze and Luckas, Paul and Heathcote, Bernard and Cacella, Paulo and Powles, Jonathan and Locke, Malcolm and Bohlsen, Terry and Chen{\´e}, Andr{\´e}-Nicolas and Miszalski, Brent and Waldron, Wayne L. and Kotze, Marissa M. and Kotze, Enrico J. and B{\"o}hm, Torsten}, title = {BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2671}, pages = {5532 -- 5569}, year = {2018}, abstract = {From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.}, language = {en} } @article{LetoTrigilioOskinovaetal.2018, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Leone, Francesco and Phillips, N. M. and Agliozzo, Claudia and Todt, Helge Tobias and Cerrigone, L.}, title = {A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty244}, pages = {562 -- 579}, year = {2018}, abstract = {We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907.}, language = {en} } @article{LetoTrigilioOskinovaetal.2018, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Cavallaro, Francesco and Ingallinera, A. and Bufano, F. and Phillips, N. M. and Agliozzo, Claudia and Cerrigone, L. and Todt, Helge Tobias and Riggi, S. and Leone, Francesco}, title = {The polarization mode of the auroral radio emission from the early-type star HD 142301}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnrasl/sly179}, pages = {L4 -- L8}, year = {2018}, abstract = {We report the detection of the auroral radio emission from the early-type magnetic star HD142301. New VLA observations of HD142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD142301 is characterized by a reversal of the sense of polarization as the star rotates. The effective magnetic field curve of HD142301 is also available making it possible to correlate the transition from the left to the right-hand circular polarization sense ( and vice versa) of the auroral pulses with the known orientation of the stellar magnetic field. The results presented in this letter have implications for the estimation of the dominant magneto-ionic mode amplified within the HD142301 magnetosphere.}, language = {en} } @article{ToalaOskinovaIgnace2017, author = {Toala, Jes{\´u}s Alberto and Oskinova, Lida and Ignace, R.}, title = {On the Absence of Non-thermal X-Ray Emission around Runaway O Stars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {838}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aa667c}, pages = {1 -- 32}, year = {2017}, abstract = {Theoretical models predict that the compressed interstellar medium around runaway O stars can produce highenergy non-thermal diffuse emission, in particular, non-thermal X-ray and gamma-ray emission. So far, detection of nonthermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six welldetermined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward. zeta ph and BD+ 43 degrees 3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.}, language = {en} } @article{LetoTrigilioOskinovaetal.2017, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Todt, Helge Tobias and Leone, F.}, title = {The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx267}, pages = {2820 -- 2833}, year = {2017}, abstract = {In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars.}, language = {en} } @article{OskinovaHuenemoerderHamannetal.2017, author = {Oskinova, Lida and Huenemoerder, D. P. and Hamann, Wolf-Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Ignace, R. and Todt, Helge Tobias and Hainich, Rainer}, title = {On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {845}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa7e79}, pages = {11}, year = {2017}, abstract = {The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.}, language = {en} } @article{IgnaceHoleOskinovaetal.2017, author = {Ignace, R. and Hole, K. T. and Oskinova, Lida and Rotter, J. P.}, title = {An X-Ray Study of Two B plus B Binaries: AH Cep and CW Cep}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {850}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa93ea}, pages = {7}, year = {2017}, abstract = {AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8. days and 2.7. days, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B. stars. Chandra ACIS-I observations were obtained to determine X-ray luminosities. AH. Cep was detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of (9-33) x 10(30) erg s(-1), or (0.5-1.7) x 10(-7) L-Bol , relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW Cep was a surprising nondetection. For CW Cep, an upper limit was determined with L-X/L-Bol < 10(-8), again for the combined components. One difference between these two systems is that AH Cep is part of a multiple system. The X-rays from AH. Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH. Cep on the short orbital period of the inner B. stars.}, language = {en} } @article{ToalaOskinovaGonzalezGalanetal.2016, author = {Toala, Jes{\´u}s Alberto and Oskinova, Lida and Gonzalez-Galan, Ana and Guerrero, Mart{\´i}n A. and Ignace, R. and Pohl, Martin}, title = {X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/79}, pages = {9}, year = {2016}, abstract = {Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, David P. and Gayley, K. G. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. S. and Oskinova, Lida and Pollock, A. M. T. and Schulz, Norbert S. and Shenar, Tomer}, title = {Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/1/29}, pages = {16}, year = {2015}, abstract = {With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.}, language = {en} } @article{OskinovaGayleyHamannetal.2012, author = {Oskinova, Lida and Gayley, K. G. and Hamann, Wolf-Rainer and Huenemoerder, D. P. and Ignace, R. and Pollock, A. M. T.}, title = {HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS}, series = {ASTROPHYSICAL JOURNAL LETTERS}, volume = {747}, journal = {ASTROPHYSICAL JOURNAL LETTERS}, number = {2}, publisher = {IOP PUBLISHING LTD}, address = {BRISTOL}, issn = {2041-8205}, doi = {10.1088/2041-8205/747/2/L25}, pages = {6}, year = {2012}, abstract = {We present the first high-resolutionX-ray spectrum of a putatively singleWolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approximate to 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.}, language = {en} } @misc{OskinovaGayleyHamannetal.2012, author = {Oskinova, Lida and Gayley, K. G. and Hamann, Wolf-Rainer and H{\"u}nem{\"o}rder, D. P. and Ignace, R. and Pollock, A. M. T.}, title = {High-Resolution X-Ray Spectroscopy reveals the special nature of Wolf-Rayet star winds (pg 747, 2012)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {752}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/752/2/L35}, pages = {1}, year = {2012}, language = {en} } @article{IgnaceToalaOskinova2015, author = {Ignace, R. and Toal{\´a}, Jes{\´u}s Alberto and Oskinova, Lida}, title = {Inversion of Intensity Profiles for Bubble Emissivity}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88432}, pages = {358}, year = {2015}, abstract = {Under the assumption of spherical symmetry, the run of intensity with impact parameter for a spatially resolved and optically thin bubble can be inverted for an "effective emissivity" as a function of radius. The effective emissivity takes into account instrumental sensitivity and even interstellar absorption. This work was supported by a grant from NASA (G03-14008X).}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, D. and Gayley, K. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. and Oskinova, Lida and Pollock, A. M. T. and Schulz, N.}, title = {High Resolution X-Ray Spectra of WR 6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88236}, pages = {301 -- 304}, year = {2015}, abstract = {As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a "fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.}, language = {en} } @inproceedings{IgnaceGayley2007, author = {Ignace, R. and Gayley, K. G.}, title = {Circumstellar Magnetic Field Diagnostics from Line Polarization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18066}, year = {2007}, language = {en} } @inproceedings{CassinelliIgnaceWaldronetal.2007, author = {Cassinelli, Joseph P. and Ignace, R. and Waldron, W. and Cho, J. and Murphy, N. and Lazarian, A.}, title = {X-ray line emission produced in clump bow shocks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18057}, year = {2007}, abstract = {We summarize Chandra observations of the emission line profiles from 17 OB stars. The lines tend to be broad and unshifted. The forbidden/intercombination line ratios arising from Helium-like ions provide radial distance information for the X-ray emission sources, while the H-like to He-like line ratios provide X-ray temperatures, and thus also source temperature versus radius distributions. OB stars usually show power law differential emission measure distributions versus temperature. In models of bow shocks, we find a power law differential emission measure, a wide range of ion stages, and the bow shock flow around the clumps provides transverse velocities comparable to HWHM values. We find that the bow shock results for the line profile properties, consistent with the observations of X-ray line emission for a broad range of OB star properties.}, language = {en} }