@article{ZhuCottonKwaketal.2021, author = {Zhu, Chuanbin and Cotton, Fabrice and Kwak, Dong-Youp and Ji, Kun and Kawase, Hiroshi and Pilz, Marco}, title = {Within-site variability in earthquake site response}, series = {Geophysical journal international}, volume = {229}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggab481}, pages = {1268 -- 1281}, year = {2021}, abstract = {The within-site variability in site response is the randomness in site response at a given site from different earthquakes and is treated as aleatory variability in current seismic hazard/risk analyses. In this study, we investigate the single-station variability in linear site response at K-NET and KiK-net stations in Japan using a large number of earthquake recordings. We found that the standard deviation of the horizontal-to-vertical Fourier spectral ratio at individual sites, that is single-station horizontal-to-vertical spectral ratio (HVSR) sigma sigma(HV,s), approximates the within-site variability in site response quantified using surface-to-borehole spectral ratios (for oscillator frequencies higher than the site fundamental frequency) or empirical ground-motion models. Based on this finding, we then utilize the single-station HVSR sigma as a convenient tool to study the site-response variability at 697 KiK-net and 1169 K-NET sites. Our results show that at certain frequencies, stiff, rough and shallow sites, as well as small and local events tend to have a higher sigma(HV,s). However, when being averaged over different sites, the single-station HVSR sigma, that is sigma(HV), increases gradually with decreasing frequency. In the frequency range of 0.25-25 Hz, sigma(HV) is centred at 0.23-0.43 in ln scales (a linear scale factor of 1.26-1.54) with one standard deviation of less than 0.1. sigma(HV) is quite stable across different tectonic regions, and we present a constant, as well as earthquake magnitude- and distance-dependent sigma(HV) models.}, language = {en} } @article{ZhuCottonKawaseetal.2022, author = {Zhu, Chuanbin and Cotton, Fabrice and Kawase, Hiroshi and H{\"a}ndel, Annabel and Pilz, Marco and Nakano, Kenichi}, title = {How well can we predict earthquake site response so far?}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {38}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {2}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {8755-2930}, doi = {10.1177/87552930211060859}, pages = {1047 -- 1075}, year = {2022}, abstract = {Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a "good match" in spectral shape at similar to 80\%-90\% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.}, language = {en} } @misc{PilzCottonRazafindrakotoetal.2020, author = {Pilz, Marco and Cotton, Fabrice and Razafindrakoto, Hoby Njara Tendrisoa and Weatherill, Graeme and Spies, Thomas}, title = {Regional broad-band ground-shaking modelling over extended and thick sedimentary basins}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-57165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571655}, pages = {25}, year = {2020}, abstract = {The simulation of broad-band (0.1 to 10 + Hz) ground-shaking over deep and spatially extended sedimentary basins at regional scales is challenging. We evaluate the ground-shaking of a potential M 6.5 earthquake in the southern Lower Rhine Embayment, one of the most important areas of earthquake recurrence north of the Alps, close to the city of Cologne in Germany. In a first step, information from geological investigations, seismic experiments and boreholes is combined for deriving a harmonized 3D velocity and attenuation model of the sedimentary layers. Three alternative approaches are then applied and compared to evaluate the impact of the sedimentary cover on ground-motion amplification. The first approach builds on existing response spectra ground-motion models whose amplification factors empirically take into account the influence of the sedimentary layers through a standard parameterization. In the second approach, site-specific 1D amplification functions are computed from the 3D basin model. Using a random vibration theory approach, we adjust the empirical response spectra predicted for soft rock conditions by local site amplification factors: amplifications and associated ground-motions are predicted both in the Fourier and in the response spectra domain. In the third approach, hybrid physics-based ground-motion simulations are used to predict time histories for soft rock conditions which are subsequently modified using the 1D site-specific amplification functions computed in method 2. For large distances and at short periods, the differences between the three approaches become less notable due to the significant attenuation of the sedimentary layers. At intermediate and long periods, generic empirical ground-motion models provide lower levels of amplification from sedimentary soils compared to methods taking into account site-specific 1D amplification functions. In the near-source region, hybrid physics-based ground-motions models illustrate the potentially large variability of ground-motion due to finite source effects.}, language = {en} } @article{PilzCottonRazafindrakotoetal.2020, author = {Pilz, Marco and Cotton, Fabrice and Razafindrakoto, Hoby Njara Tendrisoa and Weatherill, Graeme and Spies, Thomas}, title = {Regional broad-band ground-shaking modelling over extended and thick sedimentary basins}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {19}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-020-01004-w}, pages = {581 -- 603}, year = {2020}, abstract = {The simulation of broad-band (0.1 to 10 + Hz) ground-shaking over deep and spatially extended sedimentary basins at regional scales is challenging. We evaluate the ground-shaking of a potential M 6.5 earthquake in the southern Lower Rhine Embayment, one of the most important areas of earthquake recurrence north of the Alps, close to the city of Cologne in Germany. In a first step, information from geological investigations, seismic experiments and boreholes is combined for deriving a harmonized 3D velocity and attenuation model of the sedimentary layers. Three alternative approaches are then applied and compared to evaluate the impact of the sedimentary cover on ground-motion amplification. The first approach builds on existing response spectra ground-motion models whose amplification factors empirically take into account the influence of the sedimentary layers through a standard parameterization. In the second approach, site-specific 1D amplification functions are computed from the 3D basin model. Using a random vibration theory approach, we adjust the empirical response spectra predicted for soft rock conditions by local site amplification factors: amplifications and associated ground-motions are predicted both in the Fourier and in the response spectra domain. In the third approach, hybrid physics-based ground-motion simulations are used to predict time histories for soft rock conditions which are subsequently modified using the 1D site-specific amplification functions computed in method 2. For large distances and at short periods, the differences between the three approaches become less notable due to the significant attenuation of the sedimentary layers. At intermediate and long periods, generic empirical ground-motion models provide lower levels of amplification from sedimentary soils compared to methods taking into account site-specific 1D amplification functions. In the near-source region, hybrid physics-based ground-motions models illustrate the potentially large variability of ground-motion due to finite source effects.}, language = {en} } @phdthesis{Pilz2010, author = {Pilz, Marco}, title = {A comparison of proxies for seismic site conditions and amplification for the large urban area of Santiago de Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52961}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Situated in an active tectonic region, Santiago de Chile, the country´s capital with more than six million inhabitants, faces tremendous earthquake hazard. Macroseismic data for the 1985 Valparaiso and the 2010 Maule events show large variations in the distribution of damage to buildings within short distances indicating strong influence of local sediments and the shape of the sediment-bedrock interface on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity, and a study was carried out aiming to estimate site amplification derived from earthquake data and ambient noise. The analysis of earthquake data shows significant dependence on the local geological structure with regards to amplitude and duration. Moreover, the analysis of noise spectral ratios shows that they can provide a lower bound in amplitude for site amplification and, since no variability in terms of time and amplitude is observed, that it is possible to map the fundamental resonance frequency of the soil for a 26 km x 12 km area in the northern part of the Santiago de Chile basin. By inverting the noise spectral rations, local shear wave velocity profiles could be derived under the constraint of the thickness of the sedimentary cover which had previously been determined by gravimetric measurements. The resulting 3D model was derived by interpolation between the single shear wave velocity profiles and shows locally good agreement with the few existing velocity profile data, but allows the entire area, as well as deeper parts of the basin, to be represented in greater detail. The wealth of available data allowed further to check if any correlation between the shear wave velocity in the uppermost 30 m (vs30) and the slope of topography, a new technique recently proposed by Wald and Allen (2007), exists on a local scale. While one lithology might provide a greater scatter in the velocity values for the investigated area, almost no correlation between topographic gradient and calculated vs30 exists, whereas a better link is found between vs30 and the local geology. When comparing the vs30 distribution with the MSK intensities for the 1985 Valparaiso event it becomes clear that high intensities are found where the expected vs30 values are low and over a thick sedimentary cover. Although this evidence cannot be generalized for all possible earthquakes, it indicates the influence of site effects modifying the ground motion when earthquakes occur well outside of the Santiago basin. Using the attained knowledge on the basin characteristics, simulations of strong ground motion within the Santiago Metropolitan area were carried out by means of the spectral element technique. The simulation of a regional event, which has also been recorded by a dense network installed in the city of Santiago for recording aftershock activity following the 27 February 2010 Maule earthquake, shows that the model is capable to realistically calculate ground motion in terms of amplitude, duration, and frequency and, moreover, that the surface topography and the shape of the sediment bedrock interface strongly modify ground motion in the Santiago basin. An examination on the dependency of ground motion on the hypocenter location for a hypothetical event occurring along the active San Ram{\´o}n fault, which is crossing the eastern outskirts of the city, shows that the unfavorable interaction between fault rupture, radiation mechanism, and complex geological conditions in the near-field may give rise to large values of peak ground velocity and therefore considerably increase the level of seismic risk for Santiago de Chile.}, language = {en} }