@article{SiegmundFunkSommeretal.2022, author = {Siegmund, Nicole and Funk, Roger and Sommer, Michael and Avecilla, Fernando and Esteban Panebianco, Juan and Iturri, Laura Antonela and Buschiazzo, Daniel}, title = {Horizontal and vertical fluxes of particulate matter during wind erosion on arable land in the province La Pampa, Argentina}, series = {International journal of sediment research}, volume = {37}, journal = {International journal of sediment research}, number = {5}, publisher = {IRTCES}, address = {Beijing}, issn = {1001-6279}, doi = {10.1016/j.ijsrc.2022.01.004}, pages = {539 -- 552}, year = {2022}, abstract = {A detailed analysis of horizontal and vertical particulate matter (PM) fluxes during wind erosion has been done, based on measurements of PM smaller than 10, 2.5, and 1.0 mu mm, at windward and leeward positions on a measuring field. The three fractions of PM measurement are differently influenced by the increasing wind and shear velocities of the wind. The measured concentrations of the coarser fractions of the fine dust, PM10, and PM2.5, increase with wind and shear velocity, whereas the PM1.0 concentrations show no clear correlation to the shear velocity. The share of PM2.5 on PM10 depends on the measurement height and wind speed and varies between 4 and 12 m/s at the 1 m height ranging from 25\% to 7\% (average 10\%), and at the 4 m height from 39\% to 23\% (average 30\%). Although general relationships between wind speed, PM concentration, and horizontal and vertical fluxes could be found, the contribution of the measuring field was very low, as balances of incoming and outgoing fluxes show. Consequently, the measured PM concentrations are determined from a variety of sources, such as traffic on unpaved roads, cattle drives, tillage operations, and wind erosion, and thus, represent all components of land use and landscape structure in the near and far surroundings of the measuring field. The current results may reflect factors from the landscape scale rather than the influence of field-related variables. The measuring devices used to monitor PM concentrations showed differences of up to 20\%, which led to considerable deviations when determining total balances. Differences up to 67\% between the calculated fluxes prove the necessity of a previous calibration of the devices used. (c) 2022 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research.}, language = {en} } @article{SiegmundFunkKoszinskyetal.2018, author = {Siegmund, Nicole and Funk, Roger and Koszinsky, Sylvia and Buschiazzo, Daniel and Sommer, Michael}, title = {Effects of low-scale landscape structures on aeolian transport processes on arable land}, series = {Aeolian Research}, volume = {32}, journal = {Aeolian Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1875-9637}, doi = {10.1016/j.aeolia.2018.03.003}, pages = {181 -- 191}, year = {2018}, abstract = {The landscape of the semiarid Pampa in central Argentina is characterized by late Pleistocene aeolian deposits, covering large plains with sporadic dune structures. Since the current land use changed from extensive livestock production within the Caldenal forest ecosystem to arable land, the wind erosion risk increased distinctly. We measured wind erosion and deposition patterns at the plot scale and investigated the spatial variability of the erosion processes. The wind-induced mass-transport was measured with 18 Modified Wilson and Cooke samplers (MWAC), installed on a 1.44 ha large field in a 20 x 40 m grid. Physical and chemical soil properties from the upper soil as well as a digital elevation model were recorded in a 20 x 20 m grid. In a 5-month measuring campaign data from seven storms with three different wind directions was obtained. Results show very heterogeneous patterns of erosion and deposition for each storm and indicate favoured erosion on windward and deposits on leeward terrain positions. Furthermore, a multiple regression model was build, explaining up to 70\% of the spatial variance of erosion by just using four predictors: topsoil thickness, relative elevation, soil organic carbon content and slope direction. Our findings suggest a structure-process-structure complex where the landscape structure determines the effects of recent wind erosion processes which again slowly influence the structure, leading to a gradual increase of soil heterogeneity.}, language = {en} }