@article{KlaverSteenstraBorchertetal.2022, author = {Klaver, Martijn and Steenstra, Edgar S. and Borchert, Manuela and Welter, Edmund and Wilke, Max and Berndt, Jasper and Klemme, Stephan}, title = {The effect of alkalinity on Ni-O bond length in silicate glasses}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {610}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2022.121070}, pages = {7}, year = {2022}, abstract = {Equilibrium mass-dependent ("stable") isotopic fractionation of an element during magmatic processes is driven by a contrast in bonding environment between minerals and silicate melt, which is expressed as an isotopic fractionation factor. A quantitative understanding of such isotopic fractionation factors is vital to interpret observed isotopic variations in magmatic rocks. It is well known that the local environment and the bond strength of an element dictate the sign and magnitude of isotopic fractionation between minerals, but it is uncertain how the structure and chemical composition of a silicate melt can affect mineral-melt isotopic fractionation factors. To explore this, we studied the coordination environment of nickel (Ni) in different silicate glasses using extended X-ray absorption fine structure (EXAFS) measurements at the German synchrotron X-ray source (DESY). We determined -Ni-O bond lengths in a suite of synthetic but near-natural silicate glasses using EXAFS and found that the former vary systematically with melt alkalinity, which is best described by the parameter ln[1 + (Na + K)/Ca]. With increasing melt alkalinity, Ni occupies more IV-fold coordinated sites, which are associated with a shorter -Ni-O bond length. Next, we use the ionic model, which allows to predict isotopic fractionation factors based on the difference in bond length between two phases. We find that more alkaline melts have a stronger preference for the heavier isotopes of Ni than less alkaline melts. This implies that the magnitude of mineral-melt Ni isotope fractionation factors, for instance between olivine and melt, will depend on the alkalinity of the melt. At magmatic temperatures, however, the variation in fractionation factors caused by melt alkalinity will rarely exceed 0.05 parts per thousand and is thus mostly negligible, in particular in the realm of basaltic melt compositions. Nevertheless, the relationship between melt alkalinity and fractionation factor reported here can be used to extrapolate empirical data for mineral-melt Ni isotope fractionation factors, once such data become available, to the full range of magma compositions on Earth and other Solar System bodies.}, language = {en} } @article{RegenspurgVirchowWilkeetal.2022, author = {Regenspurg, Simona and Virchow, Lioba and Wilke, Franziska D. H. and Zimmer, Martin and Jolie, Egbert and Hachenberger, Annika and Yirgu, Gezahegn and Gebru, Ermias Filfilu and Vieth-Hillebrand, Andrea and Gizaw, Berhanu}, title = {Origin and migration of fluoride in the area of the Aluto Volcanic Complex (Main Ethiopian Rift)}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {146}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2022.105403}, pages = {16}, year = {2022}, abstract = {Fluoride-enriched ground and surface waters represent a major health risk for the local population in many areas along the East African Rift. The present study investigates the origin of fluoride and the reason for its accumulation in the rift waters, following two hypotheses: (i) fluid-rock-interactions release fluoride from minerals into the water and (ii) magmatic-derived fluoride-containing liquids and gases migrate along permeable fault zones until they dissolve in ground-and surface water or be released to the atmosphere. Rock-, gas, water-, soil-, and plant samples were collected from the area within and close by the Aluto Volcanic Complex, which is part of the Main Ethiopian Rift. Most analyzed waters showed fluoride concentrations above the drinking water limit (> 1.5 mg/L) with the highest values in hot springs (up to 70 mg/L) and the geothermal well (76 mg/L). In the solid phase, a high fluoride content was found in acid volcanic rocks (ignimbrite: 4391 ppm; rhyolite: 3248 ppm) as well as in pumice (up to 1955 ppm). The fluoride content of soil samples collected within the volcanic complex varied between 82 and 1036 ppm, whereas former lake sediments from outside the Aluto Volcanic Complex showed higher fluoride contents ranging from 674 to 8171 ppm. Identified fluoride-rich minerals are various amphiboles (about 3 wt.-\% F-), fluor-apatite (about 3 wt \% F-), minerals of the fluorcaphite group (about 5 wt.-\% F-), parisite (up to 9 wt.-\% F-), and fluorite (CaF2). Elevated fluoride concentrations were also measured in some gas samples from fumaroles (up to 50 ppm) and in plant samples collected next to the fumaroles (up to 65 ppm). Leaching experiments of solid samples with deionized water demonstrated that fluoride can easily be mobilized from pumice and sediments but hardly from consolidated rocks. This fluoride release increased with temperature (up to 150 C) and correlated roughly with dis-solved silica indicating the binding of some fluoride to the amorphous or weakly crystalline silica fraction. Based on these results it was concluded that fluoride migrates via different pathways through the environment: At the depth of the magma chamber during magmatic differentiation fluoride enriches initially in the magmatic melt and accumulates in some late-crystallizing minerals of igneous rocks such as fluorite or mica. Upon volcanic eruption fluoride is predominantly incorporated in the glass (ignimbrite) and ash phase (pumice). On the surface, these rocks are exposed to weathering and fluoride leaches partly out into the aqueous phase. Soft and porous rocks such as pumice release fluoride first whereas hard extrusive/igneous rocks are less prone to weathering and retain the fluoride. Pumice and (lake) sediments might act both, as source and as sink for fluoride in the area. Although some fluoride might drain from the surface into the deeper subsoil, we conclude that magmatic fluids (liquid and gas) contribute more substantially to the overall fluoride ground water content because (i) of the much higher fluoride content in deep geothermal waters and hot springs as compared to surface-near waters; (ii) active geothermal surface manifestations located along fault zones indicate that fluids migrate from deep magmatic intrusions (as gas and liquid) towards the surface, where fluoride dissolves in groundwater; (iii) and the good correlation between bicarbonate (deriving from dissolution of magmatic CO2) and fluoride content in all analyzed water samples.}, language = {en} } @article{VanderLoovenWinterleitnerBetzleretal.2022, author = {Van der Looven, Thomas and Winterleitner, Gerd and Betzler, Christian and Mutti, Maria}, title = {A biotic perspective on the Oligo-Miocene evolution of the Maldives carbonate platform from forward stratigraphic modelling (Indian Ocean)}, series = {Marine and petroleum geology}, volume = {145}, journal = {Marine and petroleum geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8172}, doi = {10.1016/j.marpetgeo.2022.105907}, pages = {16}, year = {2022}, abstract = {Forward stratigraphic modelling is a fast-developing modelling approach, used to test conceptual models, and predict stratigraphic architecture and depositional facies from basin to reservoir scales. Published subsurface applications demonstrate its added value by integrating multidisciplinary data as well as geological concepts into its constraints. When applied to carbonate depositional systems, composed of multiple sediment factories, the cooperating and interdependent production mechanisms remain poorly studied. By applying the technique to a well-studied section of the Maldives carbonate platform, a specific model design-adapted to the geological age and setting, and constrained by available data-sheds light on the interaction of its carbonate producers. The results yield a naturalistic depositional facies distribution and offer insight in the changing relationship between biotic communities during the platform evolution. After calibration, the reference model unequivocally links the formerly proposed genetic model to the seismostratigraphic architecture. Furthermore, the results show how environmental changes (seemingly of secondary impact compared to changes in physical accommodation in the stratigraphic record) can induce substantial fluctuations in carbonate production rates of biotic communities, affect the ecological accommodation, and thus impact the platform architecture. Therefore, it is crucial to treat carbonate production rates during periods of environmental change as variables with associated uncertainties in a forward stratigraphic model setup.}, language = {en} } @article{SinghSinha2022, author = {Singh, Manudeo and Sinha, Rajiv}, title = {Integrating hydrological connectivity in a process-response framework for restoration and monitoring prioritisation of floodplain wetlands in the Ramganga Basin, India}, series = {Water}, volume = {14}, journal = {Water}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14213520}, pages = {22}, year = {2022}, abstract = {Floodplain wetlands are critical for sustaining various ecological and hydrological functions in a riverine environment. Severe anthropogenic alterations and human occupation of floodplains have threatened these wetlands in several parts of the world. A major handicap in designing sustainable restoration and monitoring strategies for these wetlands is the lack of scientific process-based understanding and information on the basin-scale controls of their degradation. Here, we offer a novel approach to integrate the connectivity of the wetlands with the surrounding landscape along with other attributes such as stream density, hydrometeorological parameters, and groundwater dynamics to explain their degradation and then to prioritise them for restoration and monitoring. We hypothesise that the best possible connectivity scenario for the existence of a wetland would be if (a) the wetland has a high connectivity with its upslope area, and (b) the wetland has a low connectivity with its downslope region. The first condition ensures the flow of water into the wetland and the second condition allows longer water residence time in the wetland. Accordingly, we define four connectivity-based wetland health scenarios-good, no impact, bad, and worst. We have implemented the proposed method in 3226 wetlands in the Ramganga Basin in north India. Further, we have applied specific selection criteria, such as distance from the nearest stream and stream density, to prioritise the wetlands for restoration and monitoring. We conclude that the connectivity analysis offers a quick process-based assessment of wetlands' health status and serves as an important criterion to prioritise the wetlands for developing appropriate management strategies.}, language = {en} } @article{LohFynnManuetal.2022, author = {Loh, Yvonne Sena Akosua and Fynn, Obed Fiifi and Manu, Evans and Afrifa, George Yamoah and Addai, Millicent Obeng and Akurugu, Bismark Awinbire and Yidana, Sandow Mark}, title = {Groundwater-surface water interactions}, series = {Environmental earth sciences}, volume = {81}, journal = {Environmental earth sciences}, number = {22}, publisher = {Springer}, address = {New York}, issn = {1866-6280}, doi = {10.1007/s12665-022-10644-x}, pages = {15}, year = {2022}, abstract = {This research demonstrated the application of hydrochemical data and stable water isotopes of delta O-18 and delta D (or delta 2H) for evaluating the relationship between surface water in Lake Bosumtwi and the underlying groundwater system. It aimed at determining the presence or absence of a hydraulic relationship and for evaluating the possible direction of flow at the interface between the two reservoirs. The study also estimated evaporative losses of infiltrating rainwater as it transits the unsaturated zone and provided important information on the hydrological processes prevailing in the area. The results of Q-Mode hierarchical cluster analysis (HCA) clearly differentiate the lake water from the groundwater based on their spatial relationship. These results indicated that groundwater recharge occurs on the hilltops of the crater, where it is slightly acidic with low levels of dissolved ions, characterised by short residence time and rapid unrestricted vertical infiltration and recharge. The groundwater becomes more mineralized with longer contact times and deeper circulation with the host rock, while it flows from the recharge areas towards the lake at lower elevations. Analyses of delta O-18 and delta D showed a high evaporation rate on the lake surface (90\%) with a significant evaporative enrichment, whereas groundwater showed no significant isotopic variations. Thus suggesting that the aquifers have been recharged by recent meteoric water that has undergone some evaporative enrichment since the study established an evaporation rate of water infiltrating the unsaturated zone ranging from 54 to 60\%. Both reservoirs do not appear to be hydraulically connected, and where such a connection exists, it is expected to favour the lake.}, language = {en} } @article{LipusJiaBartholomaeusetal.2022, author = {Lipus, Daniel and Jia, Zeyu and Bartholom{\"a}us, Alexander and Burckhardt, Oliver and Sondermann, Megan and Wagner, Dirk and Kallmeyer, Jens}, title = {Circular metagenome-assembled genome of Methanobacterium sp. strain ERen5, a putative methanogenic, H2-utilizing terrestrial subsurface archaeon}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {10}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.00676-22}, pages = {2}, year = {2022}, abstract = {A circular, single-contig Methanobacterium sp. metagenome-assembled genome (MAG) was recovered from high-CO2 enrichments inoculated with drill core material from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered MAG highlighted putative methanogenesis genes, providing valuable information on archaeal activity in the deep biosphere.}, language = {en} } @article{SchifferleSpezialeLobanov2022, author = {Schifferle, Lukas and Speziale, Sergio and Lobanov, Sergey S.}, title = {High-pressure evolution of the refractive index of MgO up to 140 GPa}, series = {Journal of applied physics}, volume = {132}, journal = {Journal of applied physics}, number = {12}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0106626}, pages = {9}, year = {2022}, abstract = {Refractive index provides fundamental insights into the electronic structure of materials. At high pressure, however, the determination of refractive index and its wavelength dispersion is challenging, which limits our understanding of how physical properties of even simple materials, such as MgO, evolve with pressure. Here, we report on the measurement of room-temperature refractive index of MgO up to similar to 140 GPa. The refractive index of MgO at 600 nm decreases by similar to 2.4\% from similar to 1.737 at 1 atm to similar to 1.696 (+/- 0.017) at similar to 140 GPa. Despite the index at 600 nm is essentially pressure independent, the absolute wavelength dispersion of the refractive index at 550-870 nm decreases by similar to 28\% from similar to 0.015 at 1 atm to similar to 0.011 (+/- 8.04 x 10(-4)) at similar to 103 GPa. Single-effective-oscillator analysis of our refractive index data suggests that the bandgap of MgO increases by similar to 1.1 eV from 7.4 eV at 1 atm to similar to 8.5 (+/- 0.6) eV at similar to 103 GPa.}, language = {en} } @article{BartholomaeusMitzscherlingLipusetal.2022, author = {Bartholom{\"a}us, Alexander and Mitzscherling, Julia and Lipus, Daniel and MacLean, Joana and Wagner, Dirk}, title = {Draft genome sequence of Paenalcaligenes niemegkensis NGK35T, isolated from plastic-polluted soil of an abandoned landfill}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {10}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.00671-22}, pages = {2}, year = {2022}, abstract = {The Gram-negative bacterium Paenalcaligenes niemegkensis NGK35(T) was isolated from plastic debris in an abandoned landfill. It has the ability to grow on polyethylene and hexadecane as the sole carbon sources. Here, we report the corresponding draft genome, which contains 3.66 Mbp and is characterized by a G+C content of 52.1\%.}, language = {en} } @article{RikaniFrielerSchewe2022, author = {Rikani, Albano and Frieler, Katja and Schewe, Jacob}, title = {Climate change and international migration}, series = {PLoS one}, volume = {17}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0276764}, pages = {25}, year = {2022}, abstract = {International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3 degrees C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.}, language = {en} } @article{DahmHainzl2022, author = {Dahm, Torsten and Hainzl, Sebastian}, title = {A Coulomb stress response model for time-dependent earthquake forecasts}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2022JB024443}, pages = {19}, year = {2022}, abstract = {Seismicity models are probabilistic forecasts of earthquake rates to support seismic hazard assessment. Physics-based models allow extrapolating previously unsampled parameter ranges and enable conclusions on underlying tectonic or human-induced processes. The Coulomb Failure (CF) and the rate-and-state (RS) models are two widely used physics-based seismicity models both assuming pre-existing populations of faults responding to Coulomb stress changes. The CF model depends on the absolute Coulomb stress and assumes instantaneous triggering if stress exceeds a threshold, while the RS model only depends on stress changes. Both models can predict background earthquake rates and time-dependent stress effects, but the RS model with its three independent parameters can additionally explain delayed aftershock triggering. This study introduces a modified CF model where the instantaneous triggering is replaced by a mean time-to-failure depending on the absolute stress value. For the specific choice of an exponential dependence on stress and a stationary initial seismicity rate, we show that the model leads to identical results as the RS model and reproduces the Omori-Utsu relation for aftershock decays as well stress-shadowing effects. Thus, both CF and RS models can be seen as special cases of the new model. However, the new stress response model can also account for subcritical initial stress conditions and alternative functions of the mean time-to-failure depending on the problem and fracture mode.}, language = {en} } @article{SieberWilkeAppeltetal.2022, author = {Sieber, Melanie J. and Wilke, Max and Appelt, Oona and Oelze, Marcus and Koch-M{\"u}ller, Monika}, title = {Melting relations of Ca-Mg carbonates and trace element signature of carbonate melts up to 9 GPa - a proxy for melting of carbonated mantle lithologies}, series = {European journal of mineralogy}, volume = {34}, journal = {European journal of mineralogy}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {0935-1221}, doi = {10.5194/ejm-34-411-2022}, pages = {411 -- 424}, year = {2022}, abstract = {The most profound consequences of the presence of Ca-Mg carbonates (CaCO3-MgCO3) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3-MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3-MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300-1800 degrees C) using a rocking multi-anvil press. In the absence of water, Ca-Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca-Mg carbonates ( similar to Mg0.1-0.9Ca0.9-0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca-Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite-magnesite join of the CaCO3-MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.}, language = {en} } @article{JiaLipusBartholomaeusetal.2022, author = {Jia, Zeyu and Lipus, Daniel and Bartholomaeus, Alexander and Burckhardt, Oliver and Sondermann, Megan and Wagner, Dirk and Kallmeyer, Jens}, title = {Metagenome-assembled genome of a putative methanogenic Methanosarcina sp. strain enriched from terrestrial high-CO2 subsurface sediments}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {12}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.01039-22}, pages = {2}, year = {2022}, abstract = {A metagenome-assembled genome (MAG), named Methanosarcina sp. strain ERenArc_MAG2, was obtained from a 3-month-old H-2/CO2 atmosphere enrichment culture, originally inoculated with 60-m deep drill core sediment collected from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered draft genome revealed putative archaeal methanogenesis genes in the deep biosphere. A metagenome-assembled genome (MAG), named Methanosarcina sp. strain ERenArc_MAG2, was obtained from a 3-month-old H-2/CO2 atmosphere enrichment culture, originally inoculated with 60-m deep drill core sediment collected from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered draft genome revealed putative archaeal methanogenesis genes in the deep biosphere.}, language = {en} } @article{LueckGuillemoteauTronickeetal.2022, author = {L{\"u}ck, Erika and Guillemoteau, Julien and Tronicke, Jens and Rummel, Udo and Hierold, Wilfried}, title = {From point to field scale-indirect monitoring of soil moisture variations at the DWD test site in Falkenberg}, series = {Geoderma : an international journal of soil science}, volume = {427}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2022.116134}, pages = {15}, year = {2022}, abstract = {Information regarding the spatial distribution of soil water content is key in many disciplines and applications including soil and atmospheric sciences, hydrology, and agricultural engineering. Thus, within the past decades various experimental methods and strategies have been developed to map spatial variations in soil moisture distribution and to monitor temporal changes. Our study examines the combination of electrical resistivity mapping and point observations of soil moisture to infer the spatial and the temporal variability of soil moisture. Over a period of around two years, we performed field measurements on six days to collect repeated electrical resistivity mapping data for a nine-hectare test site south-east of Berlin, Germany. Permanently installed TDR probes, temporary TDR measurements within permanently installed tubes, and gravimetric measurements using soil samples provided soil moisture data at various selected points. In addition, soil analysis and classification results are available for 132 regularly distributed positions up to depths of 1.2 m. We compare and link three-dimensional resistivity models obtained via data inversion to soil composition and soil moisture as provided by our point data. Both the soil samples and the resistivity models indicate a two-layer medium characterized by a sandy top layer with varying thickness and a loamy bottom soil. For all six field campaigns, we observe similar resistivity patterns reflecting the temporally stable influence of soil texture. While the overall patterns are stable, the range of resistivity values changes with soil moisture. Finally, to estimate spatial models of soil moisture, we link our soil moisture and resistivity data using empirical petrophysical models relying on a second order polynomial function. We observe a mean prediction error for soil moisture of +/-0.034 m3 \& BULL; m? 3 using all observation points while we notice that point-specific models further reduce the error. Thus, we conclude that our experimental and data analysis strategies represent a reliable approach to establish site-specific models and to estimate three-dimensional moisture distribution including temporal variations.}, language = {en} } @phdthesis{Heckenbach2024, author = {Heckenbach, Esther Lina}, title = {Geodynamic modeling of process interactions at continental plate boundaries}, doi = {10.25932/publishup-64750}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-647500}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2024}, abstract = {Plate tectonic boundaries constitute the suture zones between tectonic plates. They are shaped by a variety of distinct and interrelated processes and play a key role in geohazards and georesource formation. Many of these processes have been previously studied, while many others remain unaddressed or undiscovered. In this work, the geodynamic numerical modeling software ASPECT is applied to shed light on further process interactions at continental plate boundaries. In contrast to natural data, geodynamic modeling has the advantage that processes can be directly quantified and that all parameters can be analyzed over the entire evolution of a structure. Furthermore, processes and interactions can be singled out from complex settings because the modeler has full control over all of the parameters involved. To account for the simplifying character of models in general, I have chosen to study generic geological settings with a focus on the processes and interactions rather than precisely reconstructing a specific region of the Earth. In Chapter 2, 2D models of continental rifts with different crustal thicknesses between 20 and 50 km and extension velocities in the range of 0.5-10 mm/yr are used to obtain a speed limit for the thermal steady-state assumption, commonly employed to address the temperature fields of continental rifts worldwide. Because the tectonic deformation from ongoing rifting outpaces heat conduction, the temperature field is not in equilibrium, but is characterized by a transient, tectonically-induced heat flow signal. As a result, I find that isotherm depths of the geodynamic evolution models are shallower than a temperature distribution in equilibrium would suggest. This is particularly important for deep isotherms and narrow rifts. In narrow rifts, the magnitude of the transient temperature signal limits a well-founded applicability of the thermal steady-state assumption to extension velocities of 0.5-2 mm/yr. Estimation of the crustal temperature field affects conclusions on all temperature-dependent processes ranging from mineral assemblages to the feasible exploitation of a geothermal reservoir. In Chapter 3, I model the interactions of different rheologies with the kinematics of folding and faulting using the example of fault-propagation folds in the Andean fold-and-thrust belt. The evolution of the velocity fields from geodynamic models are compared with those from trishear models of the same structure. While the latter use only geometric and kinematic constraints of the main fault, the geodynamic models capture viscous, plastic, and elastic deformation in the entire model domain. I find that both models work equally well for early, and thus relatively simple stages of folding and faulting, while results differ for more complex situations where off-fault deformation and secondary faulting are present. As fault-propagation folds can play an important role in the formation of reservoirs, knowledge of fluid pathways, for example via fractures and faults, is crucial for their characterization. Chapter 4 deals with a bending transform fault and the interconnections between tectonics and surface processes. In particular, the tectonic evolution of the Dead Sea Fault is addressed where a releasing bend forms the Dead Sea pull-apart basin, while a restraining bend further to the North resulted in the formation of the Lebanese mountains. I ran 3D coupled geodynamic and surface evolution models that included both types of bends in a single setup. I tested various randomized initial strain distributions, showing that basin asymmetry is a consequence of strain localization. Furthermore, by varying the surface process efficiency, I find that the deposition of sediment in the pull-apart basin not only controls basin depth, but also results in a crustal flow component that increases uplift at the restraining bend. Finally, in Chapter 5, I present the computational basis for adding further complexity to plate boundary models in ASPECT with the implementation of earthquake-like behavior using the rate-and-state friction framework. Despite earthquakes happening on a relatively small time scale, there are many interactions between the seismic cycle and the long time spans of other geodynamic processes. Amongst others, the crustal state of stress as well as the presence of fluids or changes in temperature may alter the frictional behavior of a fault segment. My work provides the basis for a realistic setup of involved structures and processes, which is therefore important to obtain a meaningful estimate for earthquake hazards. While these findings improve our understanding of continental plate boundaries, further development of geodynamic software may help to reveal even more processes and interactions in the future.}, language = {en} } @article{ScherbaumMzhavanadzeRosenzweigetal.2022, author = {Scherbaum, Frank and Mzhavanadze, Nana and Rosenzweig, Sebastian and M{\"u}ller, Meinard}, title = {Tuning systems of traditional Georgian singing determined from a new corpus of field recordings}, series = {Musicologist}, volume = {6}, journal = {Musicologist}, number = {2}, publisher = {Trabzon Univ State Conservatory}, address = {Trabzon}, issn = {2618-5652}, doi = {10.33906/musicologist.1068947}, pages = {142 -- 168}, year = {2022}, abstract = {In this study we examine the tonal organization of the 2016 GVM dataset, a newly-created corpus of high-quality multimedia field recordings of traditional Georgian singing with a focus on Svaneti. For this purpose, we developed a new processing pipeline for the computational analysis of non-western polyphonic music which was subsequently applied to the complete 2016 GVM dataset. To evaluate under what conditions a single tuning system is representative of current Svan performance practice, we examined the stability of the obtained tuning systems from an ensemble-, a song-, and a corpus-related perspective. Furthermore, we compared the resulting Svan tuning systems with the tuning systems obtained for the Erkomaishvili dataset (Rosenzweig et al., 2020) in the study by Scherbaum et al. (2020). In comparison to a 12-TET (12-tone-equal-temperament) system, the Erkomaishvili and the Svan tuning systems are surprisingly similar. Both systems show a strong presence of pure fourths (500 cents) and fifths (700 cents), and 'neutral' thirds (peaking around 350 cents) as well as 'neutral' sixths. In addition, the sizes of the melodic and the harmonic seconds in both tuning systems differ systematically from each other, with the size of the harmonic second being systematically larger than the melodic one.}, language = {en} } @article{BannisterBertrandHeimannetal.2022, author = {Bannister, Stephen and Bertrand, Edward A. and Heimann, Sebastian and Bourguignon, Sandra and Asher, Cameron and Shanks, Jackson and Harvison, Adrian}, title = {Imaging sub-caldera structure with local seismicity, Okataina Volcanic Centre, Taupo Volcanic Zone, using double-difference seismic tomography}, series = {Journal of volcanology and geothermal research}, volume = {431}, journal = {Journal of volcanology and geothermal research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-0273}, doi = {10.1016/j.jvolgeores.2022.107653}, pages = {16}, year = {2022}, abstract = {We examine sub-caldera structure and seismicity in and around the Okataina Volcanic Centre (OVC), Taupo Volcanic Zone, New Zealand, using seismic data collected over 4+ years with a temporary array of broadband and short-period seismometers, supplementing data from the permanent New Zealand seismometer network. We derive a new 3-D image of P-wave seismic velocity for the upper crust in the region, using double-difference seismic tomography and utilising waveform cross-correlations. We subsequently relocate 6989 earthquakes which occurred in the region over the 2010-2021 time period, using the 3D velocity model. The seismicity distribution shows spatial clusters west of Lake Rotomahana, as well as beneath Haroharo and the Makatiti Dome, inside the Okataina caldera. Beneath Makatiti Dome 90\% of the events are shallower than 7.7 +/- 0.5 km. Outside of the Okataina caldera event relocations highlight short (similar to 3-4 km long) streaks of activity in the Ngakuru graben, part of the active Taupo Rift southwest of Okataina caldera. Inside the OVC the relocated seismicity beneath Makatiti appears closely associated with low (similar to 10\%) P-wave velocity anomalies, which we resolve in the similar to 5-to-8-km depth range beneath the Okataina caldera, and which are likely related to partial melt and/or fluid-volatile pathways. Moment tensor analyses for two larger-magnitude events (M(L)4.5 and M(L)4.9) near Haroharo indicate normal faulting, with NNE-SSW fault strike, but with positive CLVD and positive isotropic components when allowing for a full moment tensor, consistent with a magmatic environment with degassing and/or fluid migration.}, language = {en} } @misc{SchoenfeldtPanekWinocuretal.2020, author = {Schoenfeldt, Elisabeth and Panek, Tomas and Winocur, Diego and Silhan, Karel and Korup, Oliver}, title = {Corrigendum to: postglacial Patagonian mass movement}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {373}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2020.107471}, pages = {1}, year = {2020}, language = {en} } @article{KothariBattistiBooteetal.2022, author = {Kothari, Kritika and Battisti, Rafael and Boote, Kenneth J. and Archontoulis, Sotirios and Confalone, Adriana and Constantin, Julie and Cuadra, Santiago and Debaeke, Philippe and Faye, Babacar and Grant, Brian and Hoogenboom, Gerrit and Jing, Qi and van der Laan, Michael and Macena da Silva, Fernando Antonio and Marin, Fabio R. and Nehbandani, Alireza and Nendel, Claas and Purcell, Larry C. and Qian, Budong and Ruane, Alex C. and Schoving, Celine and Silva, Evandro H. F. M. and Smith, Ward and Soltani, Afshin and Srivastava, Amit and Vieira, Nilson A. and Slone, Stacey and Salmeron, Montserrat}, title = {Are soybean models ready for climate change food impact assessments?}, series = {European journal of agronomy : the official journal of the European Society for Agronomy}, volume = {135}, journal = {European journal of agronomy : the official journal of the European Society for Agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2022.126482}, pages = {15}, year = {2022}, abstract = {An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 degrees C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24\%, while others simulated yield increases up to 29\%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38\% decrease under + 3 degrees C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6\% to 31\%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models.}, language = {en} } @article{RajewarMohanaLakshmiMohantyetal.2021, author = {Rajewar, S. K. and Mohana Lakshmi, Ch. and Mohanty, Aditya and Pandey, Dwijendra N. and Pandey, Anshuman and Chaurasia, Anurag and Pandey, Ananya and Rajeswar Rao, V. and Naidu, M. S. and Kumar, Amit and Mondal, Saroj K. and Yadav, Rajeev K. and Catherine, J. K. and Giri, R. K. and Gahalaut, Vineet Kumar}, title = {Constraining plate motion and crustal deformation from GNSS measurements}, series = {Journal of the Geological Society of India}, volume = {97}, journal = {Journal of the Geological Society of India}, number = {10}, publisher = {Springer India}, address = {New Delhi}, issn = {0974-6889}, doi = {10.1007/s12594-021-1850-8}, pages = {1207 -- 1213}, year = {2021}, abstract = {Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an International GNSS Service (IGS) site. The CSIR-NGRI started expanding its GNSS networks after 2003 with more focussed studies through installation in the NE India, Himalayan arc, Andaman subduction zone, stable and failed rift regions of India plate. In each instance, these measurements helped in unravelling the geodynamics of the region and seismic hazard assessment, e.g., the discovery of a plate boundary fault in the Indo-Burmese wedge, rate and mode of strain accumulation and its spatial variation in the Garhwal-Kumaun and Kashmir region of the Himalayan arc, the influence of non-tectonic deformation on tectonic deformation in the Himalayan arc, nature of crustal deformation through earthquake cycle in the Andaman Sumatra subduction zone, and localised deformation in the intraplate region and across the paleo rift regions. Besides these, GNSS measurements initiated in the Antarctica region have helped in understanding the plate motion and influence of seasonal variations on deformation. Another important by-product of the GNSS observations is the capabilities of these observations in understanding the ionospheric variations due to earthquake processes and also due to solar eclipse. We summarize these outcomes in this article.}, language = {en} } @article{PłociennikZawiskaRzodkiewiczetal.2022, author = {Pł{\´o}ciennik, Mateusz and Zawiska, Izabela and Rzodkiewicz, Monika and Noryśkiewicz, Agnieszka M. and Słowiński, Michał and M{\"u}ller, Daniela and Brauer, Achim and Antczak-Orlewska, Olga and Kramkowski, Mateusz and Peyron, Odile and Nevalainen, Liisa and Luoto, Tomi P. and Kotrys, Bartosz and Sepp{\"a}, Heikki and Bidaurreta, Jon Camuera and Rudna, Marta and Mielczarek, Małgorzata and Zawisza, Edyta and Janowska, Ewa and Błaszkiewicz, Mirosław}, title = {Climatic and hydrological variability as a driver of the Lake Gościąż biota during the Younger Dryas}, series = {Catena}, volume = {212}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2022.106049}, pages = {15}, year = {2022}, abstract = {The Younger Dryas (YD) is a roughly 1,100-year cold period marking the end of the last glaciation. Climate modelling for northern Europe indicates high summer temperatures and strong continentality. In eastern Europe, the scale of temperature variation and its influence on ecosystems is weakly recognised. Here, we present a multi-proxy reconstruction of YD conditions from Lake Gos ' ciaz (central Poland). The decadal-resolution analysis of its annually varved sediments indicates an initial decrease in Chironomidae-inferred mean July air temperature followed by steady warming. The pollen-inferred winter-to-summer temperature amplitude and annual precip-itation is highest at the Allerod/YD transition and the early YD (ca. 12.7-12.4 ky cal BP) and YD/Holocene (11.7-11.4 ka cal BP) transition. Temperature and precipitation were the main reasons for lake level fluctuations as reflected in the planktonic/littoral Cladocera ratio. The lake's diatom-inferred total phosphorus decreased with increasing summer temperature from about mid YD. Windy conditions in the early YD until ~12.3 ka cal BP caused water mixing and a short-lived/temporary increase in nutrient availability for phytoplankton. The Chironomidae-inferred summer temperature and pollen inferred summer temperature, winter temperature and annual precipitation herein are one of only a few in eastern Europe conducted with such high resolution.}, language = {en} }