@article{GamezZhouTimmermannetal.2004, author = {Gamez, A. J. and Zhou, Changsong and Timmermann, A. and Kurths, J{\"u}rgen}, title = {Nonlinear dimensionality reduction in climate data}, issn = {1023-5809}, year = {2004}, abstract = {Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Nino-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO}, language = {en} } @article{BoveBoccalettiBragardetal.2004, author = {Bove, I. and Boccaletti, Stefano and Bragard, Jean and Kurths, J{\"u}rgen and Mancini, H.}, title = {Frequency entrainment of nonautonomous chaotic oscillators}, year = {2004}, abstract = {We give evidence of frequency entrainment of dominant peaks in the chaotic spectra of two coupled chaotic nonautonomous oscillators. At variance with the autonomous case, the phenomenon is here characterized by the vanishing of a previously positive Lyapunov exponent in the spectrum, which takes place for a broad range of the coupling strength parameter. Such a state is studied also for the case of chaotic oscillators with ill-defined phases due to the absence of a unique center of rotation. Different phase synchronization indicators are used to circumvent this difficulty}, language = {en} } @article{AnishchenkoVadivasovaKurthsetal.2004, author = {Anishchenko, Vadim S. and Vadivasova, T. E. and Kurths, J{\"u}rgen and Okrokvertskhov, G. A. and Strelkova, G. I.}, title = {Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment}, issn = {1063-651X}, year = {2004}, abstract = {We present results of physical experiments where we measure the autocorrelation function (ACF) and the spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also established that the evolution of the instantaneous phase can be approximated by a Wiener random process}, language = {en} } @article{LindTitzKuhlbrodtetal.2004, author = {Lind, P. G. and Titz, Sven Holger and Kuhlbrodt, Till and Corte-Real, J. A. M. and Kurths, J{\"u}rgen and Gallas, J. A. C. and Feudel, Ulla}, title = {Coupled bistable maps : a tool to study convection parameterization in ocean models}, issn = {0218-1274}, year = {2004}, abstract = {We present a study of ocean convection parameterization based on a novel approach which includes both eddy diffusion and advection and consists of a two-dimensional lattice of bistable maps. This approach retains important features of usual grid models and allows to assess the relative roles of diffusion and advection in the spreading of convective cells. For large diffusion our model exhibits a phase transition from convective patterns to a homogeneous state over the entire lattice. In hysteresis experiments we find staircase behavior depending on stability thresholds of local convection patterns. This nonphysical behavior is suspected to induce spurious abrupt changes in the spreading of convection in ocean models. The final steady state of convective cells depends not only on the magnitude of the advective velocity but also on its direction, implying a possible bias in the development of convective patterns. Such bias points to the need for an appropriate choice of grid geometry in ocean modeling}, language = {en} } @article{AllefeldKurths2004, author = {Allefeld, Carsten and Kurths, J{\"u}rgen}, title = {Testing for phase synchronization}, issn = {0218-1274}, year = {2004}, abstract = {We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-sample test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series}, language = {en} } @article{AllefeldKurths2004, author = {Allefeld, Carsten and Kurths, J{\"u}rgen}, title = {An approach to multivariate phase synchronization analysis and its application to event-related potentials}, issn = {0218-1274}, year = {2004}, abstract = {A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields}, language = {en} } @article{MontbrioKurthsBlasius2004, author = {Montbrio, Ernest and Kurths, J{\"u}rgen and Blasius, Bernd}, title = {Synchronization of two interacting populations of oscillators}, year = {2004}, abstract = {We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.}, language = {en} } @article{OrgisBrandSchwarzetal.2009, author = {Orgis, Thomas and Brand, Sascha and Schwarz, Udo and Handorf, D{\"o}rthe and Dethloff, Klaus and Kurths, J{\"u}rgen}, title = {Influence of interactive stratospheric chemistry on large-scale air mass exchange in a global circulation model}, issn = {1951-6355}, doi = {10.1140/epjst/e2009-01105-8}, year = {2009}, abstract = {A new globally uniform Lagrangian transport scheme for large ensembles of passive tracer particles is presented and applied to wind data from a coupled atmosphere-ocean climate model that includes interactive dynamical feedback with stratospheric chemistry. This feedback from the chemistry is found to enhance large-scale meridional air mass exchange in the northern winter stratosphere as well as intrusion of stratospheric air into the troposphere, where both effects are due to a weakened polar vortex.}, language = {en} } @article{ZhouKurths2005, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Noise-sustained and controlled synchronization of stirred excitable media by external forcing}, issn = {1367-2630}, year = {2005}, abstract = {Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles}, language = {en} } @article{ZaikinKurthsSaparinetal.2005, author = {Zaikin, Alexei and Kurths, J{\"u}rgen and Saparin, Peter and Gowin, W. and Prohaska, Steffen}, title = {Modeling bone resorption in 2D CT and 3D mu CT images}, issn = {0218-1274}, year = {2005}, abstract = {We study several algorithms to simulate bone mass loss in two-dimensional and three-dimensional computed tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects for newly developed structural measures, and to understand the physical mechanisms behind the bone alteration. Our bone model approach differs from those already reported in the literature by two features. First, we work with original bone images, obtained by computed tomography (CT); second, we use structural measures of complexity to evaluate bone resorption and to compare it with the data provided by CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with experimentally found dependencies of structural measures of complexity, as well as to show efficiency of the complexity measures in the analysis of bone models. For two-dimensional images we suggest two algorithms, a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing algorithm uses a distribution of the bone material between several virtually created slices to achieve statistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed from ten I mm thick slices. For three-dimensional data, we suggest a variation of the threshold algorithm and apply it to bone images. The results of modeling have been compared with CT images using structural measures of complexity in two- and three-dimensions. This comparison has confirmed credibility of a virtual slicing modeling algorithm for two-dimensional data and a threshold algorithm for three-dimensional data}, language = {en} } @article{VianaGrebogiPintoetal.2005, author = {Viana, R. L. and Grebogi, Celso and Pinto, S. E. D. and Lopes, S. R. and Batista, A. M. and Kurths, J{\"u}rgen}, title = {Bubbling bifurcation : loss of synchronization and shadowing breakdown in complex systems}, year = {2005}, abstract = {Complex dynamical systems with many degrees of freedom may exhibit a wealth of collective phenomena related to high-dimensional chaos. This paper focuses on a lattice of coupled logistic maps to investigate the relationship between the loss of chaos synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization manifold. This has been confirmed by numerical diagnostics of synchronization and non-hyperbolic behavior, the latter using the statistical properties of finite-time Lyapunov exponents. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{SurovyatkinaKravtsovKurths2005, author = {Surovyatkina, E. D. and Kravtsov, Y. A. and Kurths, J{\"u}rgen}, title = {Fluctuation growth and saturation in nonlinear oscillators on the threshold of bifurcation of spontaneous symmetry breaking}, issn = {1539-3755}, year = {2005}, abstract = {We study prebifurcation fluctuation amplification in nonlinear oscillators subject to bifurcations of spontaneous symmetry breaking which are manifest in the doubling of stable equilibrium states. Our theoretical estimates of both the linear growth and the nonlinear saturation of the fluctuations are in good agreement with our results from numerical simulations. We show that in the saturation mode, the fluctuation variance is proportional to the standard deviation of the external noise, whereas in the linear mode, the fluctuation variance is proportional to the noise variance. It is demonstrated that the phenomenon of prebifurcation noise amplification is more pronounced in the case of a slow transition through the bifurcation point. The amplification of fluctuations in this case makes it easier to form a symmetric probability of the final equilibrium states. In contrast, for a fast transition through the bifurcation point, the effect of amplification is much less pronounced. Under backward and forward passages through the bifurcation point, a loop of noise-dependent hysteresis emerges here. We find that for a fast transition of the nonlinear oscillator through the bifurcation point, the probability symmetry of the final equilibrium states is destroyed}, language = {en} } @article{ShabuninAstakhovKurths2005, author = {Shabunin, A. and Astakhov, Vladimir V. and Kurths, J{\"u}rgen}, title = {Quantitative analysis of chaotic synchronization by means of coherence}, issn = {1539-3755}, year = {2005}, abstract = {We use an index of chaotic synchronization based on the averaged coherence function for the quantitative analysis of the process of the complete synchronization loss in unidirectionally coupled oscillators and maps. We demonstrate that this value manifests different stages of the synchronization breaking. It is invariant to time delay and insensitive to small noise and distortions, which can influence the accessible signals at measurements. Peculiarities of the synchronization destruction in maps and oscillators are investigated}, language = {en} } @article{RomanoThielKurthsetal.2005, author = {Romano, Maria Carmen and Thiel, M. and Kurths, J{\"u}rgen and Kiss, Istvan Z. and Hudson, J. L.}, title = {Detection of synchronization for non-phase-coherent and non-stationary data}, issn = {0295-5075}, year = {2005}, abstract = {We present a new method to detect phase as well as generalized synchronization in a wide class of complex systems. It is based on the recurrences of the system's trajectory to the neighborhood of a former state in phase space. We illustrate the applicability of the algorithm for the paradigmatic chaotic Rossler system in the funnel regime and for noisy data, where other methods to detect phase synchronization fail. Furthermore, we demonstrate for electrochemical experiments that the method can easily detect phase and generalized synchronization in non-phase- coherent and even non-stationary time series}, language = {en} } @article{SaparinThomsenProhaskaetal.2005, author = {Saparin, P. I. and Thomsen, J. S. and Prohaska, Steffen and Zaikin, Alexei and Kurths, J{\"u}rgen and Hege, H. C. and Gowin, W.}, title = {Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity}, issn = {0094-5765}, year = {2005}, abstract = {Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel. © 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{VolkovUllnerKurths2005, author = {Volkov, E. I. and Ullner, Ekkehard and Kurths, J{\"u}rgen}, title = {Stochastic multiresonance in the coupled relaxation oscillators}, issn = {1054-1500}, year = {2005}, abstract = {We study the noise-dependent dynamics in a chain of four very stiff excitable oscillators of the FitzHugh- Nagumo type locally coupled by inhibitor diffusion. We could demonstrate frequency- and noise-selective signal acceptance which is based on several noise-supported stochastic attractors that arise owing to slow variable diffusion between identical excitable elements. The attractors have different average periods distinct from that of an isolated oscillator and various phase relations between the elements. We explain the correspondence between the noise-supported stochastic attractors and the observed resonance peaks in the curves for the linear response versus signal frequency. (C) 2005 American Institute of Physics}, language = {en} } @article{OsipovIvanchenkoKurthsetal.2005, author = {Osipov, Grigory V. and Ivanchenko, Mikhail V. and Kurths, J{\"u}rgen and Hu, B.}, title = {Synchronized chaotic intermittent and spiking behavior in coupled map chains}, issn = {1539-3755}, year = {2005}, abstract = {We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermittent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena are the onset and existence of global (all-to-all) and cluster (partial) synchronization with increase of coupling. Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchronization is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of a fully incoherent nonsynchronous state (spatiotemporal intermittency) appears. Synchronization-desynchronization transitions with increase of coupling are also demonstrated for a system resembling an intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks}, language = {en} } @article{MotterZhouKurths2005, author = {Motter, Adilson E. and Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Enhancing complex-network synchronization}, issn = {0295-5075}, year = {2005}, abstract = {Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in weighted networks with asymmetric coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unwcighted coupling}, language = {en} } @article{MarwanKurths2005, author = {Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Line structures in recurrence plots}, issn = {0375-9601}, year = {2005}, abstract = {Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slope of these line structures is connected with a specific transformation of the time scales of different segments of the phase-space trajectory. This provides us a better understanding of the structures occurring in recurrence plots. The relationship between the time-scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross recurrence plots, the time-scales of differently sampled or time- transformed measurements can be adjusted. An application to geophysical measurements illustrates the capability of this method for the adjustment of time-scales in different measurements. (C) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{MaraunKurths2005, author = {Maraun, Douglas and Kurths, J{\"u}rgen}, title = {Epochs of phase coherence between El Nino/Southern Oscillation and Indian monsoon}, issn = {0094-8276}, year = {2005}, abstract = {We present a modern method used in nonlinear time series analysis to investigate the relation of two oscillating systems with respect to their phases, independently of their amplitudes. We study the difference of the phase dynamics between El Nino/Southern Oscillation (ENSO) and the Indian Monsoon on inter-annual time scales. We identify distinct epochs, especially two intervals of phase coherence, 1886 - 1908 and 1964 - 1980, corroborating earlier findings from a new point of view. A significance test shows that the coherence is very unlikely to be the result of stochastic fluctuations. We also detect so far unknown periods of coupling which are invisible to linear methods. These findings suggest that the decreasing correlation during the last decades might be a typical epoch of the ENSO/ Monsoon system having occurred repeatedly. The high time resolution of the method enables us to present an interpretation of how volcanic radiative forcing could cause the coupling}, language = {en} }