@phdthesis{Devers2011, author = {Devers, Emanuel}, title = {Phosphate homeostasis and novel microRNAs are involved in the regulation of the arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55572}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die arbuskul{\"a}re Mykorrhiza ist die wahrscheinlich {\"a}lteste Form der Wurzelsymbiosen zwischen Pflanzen und Pilzen und hat sich vor 420 Millionen Jahren entwickelt. In dieser Symbiose, die zwischen nahezu allen Landpflanzen und Pilzen des Reiches Glomeromycota ausgebildet wird, versorgt der Pilz die Pflanze mit N{\"a}hrstoffen, wobei die verbesserte Versorgung mit Phosphat f{\"u}r die Pflanze sicher den gr{\"o}ßten Vorteil darstellt. Im Gegenzug erh{\"a}lt der Pilz Zucker, welche die Pflanze aus der Photosynthese bereitstellt. Zu hohe Phosphatkonzentrationen im Boden oder D{\"u}nger f{\"u}hren allerdings zu einer Verringerung in der Auspr{\"a}gung der arbuskul{\"a}ren Mykorrhiza. Diese Unterdr{\"u}ckung der Symbiose wird nicht durch eine lokale Reaktion der Wurzeln ausgel{\"o}st, sondern in erster Linie durch einen hohen Phosphatgehalt im Pflanzenspross. Somit handelt es sich also um eine systemische, also dem Gesamtsystem „Pflanze" betreffende Antwort. Die molekularen Mechanismen dieser Anpassung sind noch wenig bekannt und sind vor allem f{\"u}r die Agrarwirtschaft von besonderem Interesse. Eine Mikro-RNA (miRNA) des bereits bekannten Phosphathom{\"o}ostasesignalwegs (PHR1-miRNA399-PHO2 Signalweg) akkumuliert verst{\"a}rkt in mykorrhizierten Wurzeln. Das deutet daraufhin, dass dieser Signalweg und diese miRNA eine wichtige Rolle in der Regulation der arbuskul{\"a}ren Mykorrhiza spielen. Ziel dieser Studie war es neue Einblicke in die molekularen Mechanismen, die zur Unterdr{\"u}ckung der arbuskul{\"a}ren Mykorrhiza bei hohen Phosphatkonzentrationen f{\"u}hren, zu gewinnen. Dabei sollte der Einfluss von PHO2, sowie von miRNAs in dieser Symbiose genauer untersucht werden. Ein funktionelles Ortholog von PHO2, MtPho2, wurde in der Pflanze Medicago truncatula identifiziert. MtPho2-Mutanten, welche nicht mehr in der Lage waren ein funktionales PHO2 Protein zu exprimieren, zeigten schnellere Kolonisierung durch den AM-Pilz. Jedoch wurde auch in den mtpho2-Mutanten die Symbiose durch hohe Phosphatkonzentrationen unterdr{\"u}ckt. Dies bedeutet, dass PHO2 und somit der PHR1-miRNA399-PHO2 Signalweg eine wichtige Funktion w{\"a}hrend der fortschreitenden Kolonisierung der Wurzel durch den Pilz hat, aber und weitere Mechanismen in der Unterd{\"u}ckung der Symbiose bei hohen Phosphatkonzentrationen beteiligt sein m{\"u}ssen. Die Analyse von Transkriptionsprofilen von Spross- und Wurzeln mittels Microarrays zeigte, dass die Unterdr{\"u}ckung der AM Symbiose durch hohe Phosphatkonzentrationen m{\"o}glicherweise auf eine Unterdr{\"u}ckung der Expression einer Reihe symbiosespezifischer Gene im Spross der Pflanze beruht. Um die Rolle weiterer miRNA in der AM Symbiose zu untersuchen, wurden mittels einer Hochdurchsatz-Sequenzierung 243 neue und 181 aus anderen Pflanzen bekannte miRNAs in M. truncatula entdeckt. Zwei dieser miRNAs, miR5229 und miR160f*, sind ausschließlich w{\"a}hrend der arbuskul{\"a}ren Mykorrhiza zu finden und weitere miRNAs werden w{\"a}hrend dieser Symbiose verst{\"a}rkt gebildet. Interessanterweise f{\"u}hren einige dieser miRNAs zum Abbau von Transkripten, die eine wichtige Funktion in der arbuskul{\"a}ren Mykorrhiza und Wurzelkn{\"o}llchensymbiose besitzen. Die Ergebnisse dieser Studie liefern eine neue Grundlage f{\"u}r die Untersuchung von regulatorischen Netzwerken, die zur zellul{\"a}ren Umprogrammierung w{\"a}hrend der Interaktion zwischen Pflanzen und arbuskul{\"a}ren Mykorrhiza-Pilzen bei verschiedenen Phosphatbedingungen f{\"u}hren.}, language = {en} }