@article{LauxErmilovaPannwitzetal.2018, author = {Laux, Eva-Maria and Ermilova, Elena and Pannwitz, Daniel and Gibbons, Jessica and H{\"o}lzel, Ralph and Bier, Frank Fabian}, title = {Dielectric Spectroscopy of Biomolecules up to 110 GHz}, series = {Frequenz}, volume = {72}, journal = {Frequenz}, number = {3-4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0016-1136}, doi = {10.1515/freq-2018-0010}, pages = {135 -- 140}, year = {2018}, abstract = {Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.}, language = {en} } @article{LauxBierHoelzel2018, author = {Laux, Eva-Maria and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {Dielectrophoretic Stretching of DNA}, series = {DNA Nanotechnology}, journal = {DNA Nanotechnology}, edition = {2}, publisher = {Humana Press Inc.}, address = {New York}, isbn = {978-1-4939-8582-1}, issn = {1064-3745}, doi = {10.1007/978-1-4939-8582-1_14}, pages = {199 -- 208}, year = {2018}, abstract = {The spatial control of DNA and of self-assembled DNA constructs is a prerequisite for the preparation of DNA-based nanostructures and microstructures and a useful tool for studies on single DNA molecules. Here we describe a protocol for the accumulation of dissolved lambda-DNA molecules between planar microelectrodes by the action of inhomogeneous radiofrequency electric fields. The resulting AC electrokinetic forces stretch the DNA molecules and align them parallel to the electric field. The electrode preparation from off-the-shelf electronic components is explained, and a detailed description of the electronic setup is given. The experimental procedure is controlled in real-time by fluorescence microscopy.}, language = {en} } @article{LiCorriganYangetal.2015, author = {Li, Chenhong and Corrigan, Shannon and Yang, Lei and Straube, Nicolas and Harris, Mark and Hofreiter, Michael and White, William T. and Naylor, Gavin J. P.}, title = {DNA capture reveals transoceanic gene flow in endangered river sharks}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {112}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {43}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1508735112}, pages = {13302 -- 13307}, year = {2015}, abstract = {For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.}, language = {en} }