@article{HerenzRichterCharltonetal.2013, author = {Herenz, Peter and Richter, Philipp and Charlton, Jane C. and Masiero, Joseph R.}, title = {The milky way halo as a QSO absorption-line system new results from an HST/STIS absorption-line catalogue of galactic high-velocity clouds}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220531}, pages = {23}, year = {2013}, abstract = {We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low-and intermediate ions (Oi, Cii, Si ii, Mgii, Feii, Si iii, Civ, and Si iv) in the range f(c) = 0.20-0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for Si ii and Mg II, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average similar to 52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is < f(c,sMgII)> = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mgii absorbers is < 34 percent. These findings are in line with the idea that outflowing gas (e. g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong Mgii absorbers in the local Universe.}, language = {en} } @article{FoxRichterWakkeretal.2013, author = {Fox, Andrew J. and Richter, Philipp and Wakker, Bart P. and Lehner, Nicolas and Howk, J. Christopher and Ben Bekhti, Nadya and Bland-Hawthorn, Joss and Lucas, Stephen}, title = {The COS/UVES absorption survey of the magellanic stream - I. One-tenth solar abundances along the body of the stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {772}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/772/2/110}, pages = {16}, year = {2013}, abstract = {The Magellanic Stream (MS) is a massive and extended tail of multi-phase gas stripped out of the Magellanic Clouds and interacting with the Galactic halo. In this first paper of an ongoing program to study the Stream in absorption, we present a chemical abundance analysis based on HST/COS and VLT/UVES spectra of four active galactic nuclei (RBS 144, NGC 7714, PHL 2525, and HE 0056-3622) lying behind the MS. Two of these sightlines yield good MS metallicity measurements: toward RBS 144 we measure a low MS metallicity of [S/H] = [S II/H I] = -1.13 +/- 0.16 while toward NGC 7714 we measure [O/H] = [O I/H I] = -1.24 +/- 0.20. Taken together with the published MS metallicity toward NGC 7469, these measurements indicate a uniform abundance of approximate to 0.1 solar along the main body of the Stream. This provides strong support to a scenario in which most of the Stream was tidally stripped from the SMC approximate to 1.5-2.5 Gyr ago (a time at which the SMC had a metallicity of approximate to 0.1 solar), as predicted by several N-body simulations. However, in Paper II of this series, we report a much higher metallicity (S/H = 0.5 solar) in the inner Stream toward Fairall 9, a direction sampling a filament of the MS that Nidever et al. claim can be traced kinematically to the Large Magellanic Cloud, not the Small Magellanic Cloud. This shows that the bifurcation of the Stream is evident in its metal enrichment, as well as its spatial extent and kinematics. Finally we measure a similar low metallicity [O/H] = [O I/H I] = -1.03 +/- 0.18 in the v(LSR) = 150 km s(-1) cloud toward HE 0056-3622, which belongs to a population of anomalous velocity clouds near the south Galactic pole. This suggests these clouds are associated with the Stream or more distant structures (possibly the Sculptor Group, which lies in this direction at the same velocity), rather than tracing foreground Galactic material.}, language = {en} } @article{RichterFoxWakkeretal.2013, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Lehner, Nicolas and Howk, J. Christopher and Bland-Hawthorn, Joss and Ben Bekhti, Nadya and Fechner, Cora}, title = {The COS/UVES absorption survey of the magellanic stream - II. Evidence for a complex enrichment history of the stream from the fairall 9 sightline}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {772}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/772/2/111}, pages = {19}, year = {2013}, abstract = {We present a multi-wavelength study of the Magellanic Stream (MS), a massive gaseous structure in the Local Group that is believed to represent material stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances and physical conditions in the Stream toward the quasar Fairall 9. Line absorption in the MS from a large number of metal ions and from molecular hydrogen is detected in up to seven absorption components, indicating the presence of multi-phase gas. From the analysis of unsaturated S II absorption, in combination with a detailed photoionization model, we obtain a surprisingly high alpha abundance in the Stream toward Fairall 9 of [S/H] = -0.30 +/- 0.04 (0.50 solar). This value is five times higher than what is found along other MS sightlines based on similar COS/UVES data sets. In contrast, the measured nitrogen abundance is found to be substantially lower ([N/H] = -1.15 +/- 0.06), implying a very low [N/alpha] ratio of -0.85 dex. The substantial differences in the chemical composition of MS toward Fairall 9 compared to other sightlines point toward a complex enrichment history of the Stream. We favor a scenario, in which the gas toward Fairall 9 was locally enriched with a elements by massive stars and then was separated from the Magellanic Clouds before the delayed nitrogen enrichment from intermediate-mass stars could set in. Our results support (but do not require) the idea that there is a metal-enriched filament in the Stream toward Fairall 9 that originates in the LMC.}, language = {en} } @article{Richter2012, author = {Richter, Philipp}, title = {Cold gas accretion by high-velocity clouds and their connection to QSO Absorption-line systems}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/165}, pages = {11}, year = {2012}, abstract = {We combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our model indicates that the H I disks of galaxies and their surrounding HVC population can account for 30\%-100\% of intervening QSO absorption-line systems with log N(H I) >= 17.5 at z approximate to 0. We estimate that the neutral-gas accretion rate density of galaxies at low redshift from infalling HVCs is dM(H) (I)/dt/dV approximate to 0.022 M-circle dot yr(-1) Mpc(-3), which is close to the measured star formation rate density in the local universe. HVCs thus may play an important role in the ongoing formation and evolution of galaxies.}, language = {en} } @article{BenBekhtiWinkelRichteretal.2012, author = {Ben Bekhti, Nadya and Winkel, B. and Richter, P. and Kerp, J. and Klein, U. and Murphy, M. T.}, title = {An absorption-selected survey of neutral gas in the Milky Way halo New results based on a large sample of Ca II, Na I, and H I spectra towards QSOs}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {542}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {2}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201118673}, pages = {17}, year = {2012}, abstract = {Aims. We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Methods. Multi-wavelength studies were performed combining optical absorption line data of Ca II and Na I with follow-up H I 21-cm emission line observations along 408 sight lines towards low-and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. H I data were extracted from the Effelsberg-Bonn H I survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. Results. Ca II (Na I) halo absorbers at intermediate and high radial velocities are present in 40-55\% (20-35\%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65\% of the cases, absorption is associated with H I 21-cm emission. The Ca II (Na I) column density distribution function follows a power-law with a slope of beta approximate to -2.2 (-1.4). Conclusions. Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common H I high-and intermediate-velocity clouds seen in 21-cm observations. We find that Na I/Ca II column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman a systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.}, language = {en} } @article{WinkelBenBekhtiDarmstaedteretal.2011, author = {Winkel, B. and Ben Bekhti, Nadya and Darmstaedter, V. and Floeer, L. and Kerp, J. and Richter, Philipp}, title = {The high-velocity cloud complex Galactic center negative as seen by EBHIS and GASS I. Cloud catalog and global properties}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {533}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {18}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117357}, pages = {13}, year = {2011}, abstract = {Using Milky Way data of the new Effelsberg-Bonn HI Survey (EBHIS) and the Galactic All-Sky Survey (GASS), we present a revised picture of the high-velocity cloud (HVC) complex Galactic center negative (GCN). Owing to the higher angular resolution of these surveys compared to previous studies (e.g., the Leiden Dwingeloo Survey), we resolve complex GCN into lots of individual tiny clumps, that mostly have relatively broad line widths of more than 15 km s(-1). We do not detect a diffuse extended counterpart, which is unusual for an HVC complex. In total 243 clumps were identified and parameterized which allows us to statistically analyze the data. Cold-line components (i.e.,Delta upsilon(fwhm) < 7.5 km s(-1)) are found in about 5\% only of the identified cloudlets. Our analysis reveals that complex GCN is likely built up of several subpopulations that do not share a common origin. Furthermore, complex GCN might be a prime example for warm-gas accretion onto the Milky Way, where neutral HI clouds are not stable against interaction with the Milky Way gas halo and become ionized prior to accretion.}, language = {en} }