@article{MischkeGinatAlSaqaratetal.2012, author = {Mischke, Steffen and Ginat, Hanan and Al-Saqarat, Bety and Almogi-Labin, Ahuva}, title = {Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.017}, pages = {87 -- 99}, year = {2012}, abstract = {The hyperarid region of Israel and Jordan covers a large area where numerous sites of Pleistocene lake sediments suggest that climate conditions were significantly wetter during the Pleistocene. This region experienced a significant increase in aridity in recent decades and the number of existing surface waters is diminishing rapidly. We studied ostracod shells from 49 pond and stream sites to determine the species distribution and to infer ecological preferences especially with respect to general differences in water movement, conductivity and ion composition. Twenty-two ostracod species were identified in total of which 12 taxa occur at three or more sites. Among the rarer species. Cyprinotus scholiosus was identified for the first time after two records from Plio- and Pleistocene sites in Yemen and Saudi Arabia. Further, Paracypretta amati was recorded and its ecological preferences discussed for the first time following the description of the species from its type locality in Sudan. Cypridopsis elongata is the only typical inhabitant of lotic habitats, strictly preferring freshwater conditions and waters with an alkalinity/Ca ratio around 1 and cations dominated by Ca(2+) and anions by HCO(3)(-). In contrast, Cyprideis torosa, Limnocythere inopinata and Heterocypris incongruens apparently prefer waters dominated by Na(+) associated with cations and Cl(-) associated with anions. Heterocypris salina and C. torosa occur over a wide conductivity (or salinity) range and in waters with alkalinity/Ca ratios around 1 and with significant alkalinity depletion. Humphcypris subterranea, Ilyocypris spp. and H. sauna are the only taxa which do not show any preference with respect to both the cation and anion dominance of the waters. The ecological preferences of the ostracod species from water bodies in the study area are discussed in detail and can be used for a qualitative assessment of the hydrodynamical and hydrochemical conditions of former water bodies in the presently hyperarid environment based on ostracod species composition analysis of Pleistocene aquatic sediments.}, language = {en} } @article{VanderMeerenMischkeSunjidmaaetal.2012, author = {Van der Meeren, T. and Mischke, Steffen and Sunjidmaa, N. and Herzschuh, Ulrike and Ito, E. and Martens, K. and Verschuren, Dirk}, title = {Subfossil ostracode assemblages from Mongolia quantifying response for paleolimnological applications}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.004}, pages = {138 -- 151}, year = {2012}, abstract = {Ostracodes (Ostracoda, Crustacea) are aquatic micro-crustaceans with a significant representation in the fossil record. If the environmental influence on the species composition of their communities is robustly quantified, past changes in ostracode communities reflected in fossil assemblages can be used for paleo-environmental reconstruction. We analyzed ostracode assemblages in recently deposited surface sediments from 56 lakes in western and central Mongolia, and simultaneously recorded local water chemistry and solute concentration in order to elucidate the distribution of individual ostracode species in relation to these broad environmental gradients. Multivariate analysis indicated that the species variation in ostracode assemblages could be mainly attributed to variations in percent calcium (\%Ca) relative to total cation content, mean annual precipitation, calcium concentration, alkalinity, percent bicarbonate relative to total anion content, and mean July temperature. This matches well with the results of a similar analysis on presence/absence data of living ostracodes in nearshore samples, even though some differences exist between the faunal composition of both datasets. The documented response of ostracode species to environmental variation tracks the typical solute evolutionary pathway for surface waters in this region, characterized by calcite precipitation and consequent depletion in dissolved calcium. Hence, the best quantitative inference model (WA-PLS model with R-jack(2) = 0.70, RMSEP = 0.40) for paleolimnological application was obtained for \%Ca. Comparison between this model and a specific conductance (SC) inference model based on the same dataset, and based on ostracode datasets from different regions, indicated that the \%Ca inference model suffers less than the SC inference model from a step-change in reconstructed values. The statistical power of different inference models based on Mongolian ostracodes are variously affected by the common dominance of a single euryhaline species (Limnocythere inopinata), limited faunal turnover in the freshwater portion of the salinity gradient, and the bimodal frequency distribution of SC among regional lakes. The latter probably represents true scarcity of lakes with intermediate salinity rather than a biased representation in our dataset. In a broader context of ostracode ecology, and with respect to regional paleolimnological applications, we highlight the potential of fossil Mongolian ostracode assemblages to trace past hydrological shifts associated with changes in groundwater inflow.}, language = {en} }