@article{WertheimerStGeorgesRobillardLerougeetal.2012, author = {Wertheimer, Michael R. and St-Georges-Robillard, Amelie and Lerouge, Sophie and Mwale, Fackson and Elkin, Bentsian and Oehr, Christian and Wirges, Werner and Gerhard, Reimund}, title = {Amine-rich organic thin films for cell culture - possible electrostatic effects in cell-surface interactions}, series = {Japanese journal of applied physics}, volume = {51}, journal = {Japanese journal of applied physics}, number = {11}, publisher = {Japan Soc. of Applied Physics}, address = {Tokyo}, issn = {0021-4922}, doi = {10.1143/JJAP.51.11PJ04}, pages = {5}, year = {2012}, abstract = {In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.}, language = {en} }