@article{GriggioBedinRaddietal.2022, author = {Griggio, Massimo and Bedin, Luigi R. and Raddi, Roberto and Reindl, Nicole and Tomasella, Lina and Scalco, M. and Salaris, M. and Cassisi, S. and Ochner, P. and Ciroi, S. and Rosati, P. and Nardiello, Domenico and Anderson, J. and Libralato, Mattia and Bellini, A. and Vallenari, A. and Spina, L. and Pedani, M.}, title = {Astro-photometric study of M37 with Gaia and wide-field ugi-imaging}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1920}, pages = {1841 -- 1853}, year = {2022}, abstract = {We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material.}, language = {en} } @article{WernerReindlDorschetal.2022, author = {Werner, Klaus and Reindl, Nicole and Dorsch, Matti and Geier, Stephan and Munari, Ulisse and Raddi, Roberto}, title = {Non-local thermodynamic equilibrium spectral analysis of five hot, hydrogen-deficient pre-white dwarfs}, series = {Astronomy and Astrophysics}, volume = {658}, journal = {Astronomy and Astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142397}, pages = {15}, year = {2022}, abstract = {Hot, compact, hydrogen-deficient pre-white dwarfs (pre-WDs) with effective temperatures of Teff > 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10\%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6\%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C{\^a}€» IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs.}, language = {en} } @article{SchaffenrothPelisoliBarlowetal.2022, author = {Schaffenroth, Veronika and Pelisoli, Ingrid and Barlow, Brad N. and Geier, Stephan and Kupfer, Thomas}, title = {Hot subdwarfs in close binaries observed from space I.}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {666}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202244214}, pages = {19}, year = {2022}, abstract = {Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75\%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.}, language = {en} } @article{NeunteufelPreeceKruckowetal.2022, author = {Neunteufel, Patrick and Preece, H. and Kruckow, Matthias U. and Geier, Stephan and Hamers, Adrian S. and Justham, S. and Podsiadlowski, Philipp}, title = {Properties and applications of a predicted population of runaway He-sdO/B stars ejected from single degenerate He-donor SNe}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {663}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142864}, pages = {26}, year = {2022}, abstract = {Context. Thermonuclear supernovae (SNe), a subset of which are the highly important SNe of Type Ia and Iax, are relatively poorly understood phenomena. One of the more promising scenarios leading up to the creation of a thermonuclear SN involves accretion of helium-rich material from a binary companion. Following the SN, the binary companion is then ejected from the location of the progenitor binary at velocities possibly large enough to unbind it from the gravitational potential of the Galaxy. Ejected companion stars should form a detectable population, if their production mechanism is not exceedingly rare. Aims. This study builds on previous works, producing the most extensive prediction of the properties of such a hypothetical population to date, taking both Chandrasekhar and non-Chandrasekhar mass events into account. These results are then used to define criteria for membership of this population and characterise putative subpopulations. Methods. This study contains 6 x 10(6) individual ejection trajectories out of the Galactic plane calculated with the stellar kinematics framework SHyRT, which are analysed with regard to their bulk observational properties. These are then put into context with the only previously identified population member US 708 and applied to a number of other possible candidate objects. Results. We find that two additional previously observed objects possess properties to warrant a designation as candidate objects. Characterisation of these object with respect to the predicted population finds all of them to be extreme in at least one astrometric observable. Higher mass ( >0 :7 M-circle dot) objects should be over-represented in the observationally accessible volume, with the ratio of bound to unbound objects being an accessible observable for the determination of the dominant terminal accretor mass. We find that current observations of runaway candidates within 10 kpc support a Galactic SN rate of the order of similar to 3 x 10(-7) yr(-1) to similar to 2 x 10(-6) yr(-1), three orders of magnitude below the inferred Galactic SN Ia rate and two orders of magnitude below the formation rate of predicted He-donor progenitors. Conclusions. The number of currently observed population members suggests that the He-donor scenario, as suspected before, is not a dominant contributor to the number of observed SNe Ia. However, even at the low event rate suggested, we find that the majority of possibly detectable population members is still undetected. The extreme nature of current population members suggests that a still larger number of objects has simply evaded detection up to this point, hinting at a higher contribution than is currently supported by observation.}, language = {en} }