@article{TianHerzschuhDallmeyeretal.2013, author = {Tian, Fang and Herzschuh, Ulrike and Dallmeyer, Anne and Xu, Qinghai and Mischke, Steffen and Biskaborn, Boris K.}, title = {Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {73}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.05.005}, pages = {31 -- 47}, year = {2013}, abstract = {A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only.}, language = {en} } @article{WangZhangWuennemannetal.2015, author = {Wang, Rong and Zhang, Yongzhan and W{\"u}nnemann, Bernd and Biskaborn, Boris K. and Yin, He and Xia, Fei and Zhou, Lianfu and Diekmann, Bernhard}, title = {Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China}, series = {Journal of Asian earth sciences}, volume = {107}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2015.04.008}, pages = {140 -- 150}, year = {2015}, abstract = {Profundal lake sediment cores are often interpreted in line with diverse and detailed sedimentological processes to infer paleoenvironmental conditions. The effects of frozen lake surfaces on terrigenous sediment deposition and how climate changes on the Tibetan Plateau are reflected in these lakes, however, is seldom discussed. A lake sediment core from Hala Lake (590 km(2)), northeastern Tibetan Plateau spanning the time interval from the Last Glacial Maximum to the present was investigated using high-resolution grain-size composition of lacustrine deposits. Seismic analysis along a north-south profile across the lake was used to infer the sedimentary setting within the lake basin. Periods of freezing and melting processes on the lake surface were identified by MODIS (MOD10A1) satellite data. End-member modeling of the grain size distribution allowed the discrimination between lacustrine, eolian and fluvial sediments. The dominant clay sedimentation (slack water type) during the global Last Glacial Maximum (LGM) reflects ice interceptions in long cold periods, in contrast to abundant eolian input during abrupt cold events. Therefore, fluvial and slack water sedimentation processes can indicate changes in the local paleoclimate during periods of the lake being frozen, when eolian input was minor. Inferred warm (i.e., similar to 22.7 and 19.5 cal. ka BP) and cold (i.e., similar to 11-9 and 3-1.5 cal. ka BP) spells have significant environmental impacts, not only in the regional realm, but they are also coherent with global-scale climate events. The eolian input generally follows the trend of the mid-latitude westerly wind dynamics in winter, contributing medium-sized sand to the lake center, deposited within the ice cover during icing and melting phases. Enhanced input was dominant during the Younger Dryas, Heinrich Event 1 and at around 8.2 ka, equivalent to the well-known events of the North Atlantic realm. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }