@article{WischnewskiMackayApplebyetal.2011, author = {Wischnewski, Juliane and Mackay, Anson W. and Appleby, Peter G. and Mischke, Steffen and Herzschuh, Ulrike}, title = {Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries}, series = {Journal of paleolimnolog}, volume = {46}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9533-x}, pages = {215 -- 227}, year = {2011}, abstract = {A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a (210)Pb/(137)Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The (210)Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high (210)Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.}, language = {en} } @article{BellJonesSmithetal.2012, author = {Bell, M. J. and Jones, E. and Smith, J. and Smith, P. and Yeluripati, J. and Augustin, J{\"u}rgen and Juszczak, R. and Olejnik, J. and Sommer, Michael}, title = {Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model}, series = {Nutrient cycling in agroecosystems}, volume = {92}, journal = {Nutrient cycling in agroecosystems}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-1314}, doi = {10.1007/s10705-011-9479-4}, pages = {161 -- 181}, year = {2012}, abstract = {The global warming potential of nitrous oxide (N2O) and its long atmospheric lifetime mean its presence in the atmosphere is of major concern, and that methods are required to measure and reduce emissions. Large spatial and temporal variations means, however, that simple extrapolation of measured data is inappropriate, and that other methods of quantification are required. Although process-based models have been developed to simulate these emissions, they often require a large amount of input data that is not available at a regional scale, making regional and global emission estimates difficult to achieve. The spatial extent of organic soils means that quantification of emissions from these soil types is also required, but will not be achievable using a process-based model that has not been developed to simulate soil water contents above field capacity or organic soils. The ECOSSE model was developed to overcome these limitations, and with a requirement for only input data that is readily available at a regional scale, it can be used to quantify regional emissions and directly inform land-use change decisions. ECOSSE includes the major processes of nitrogen (N) turnover, with material being exchanged between pools of SOM at rates modified by temperature, soil moisture, soil pH and crop cover. Evaluation of its performance at site-scale is presented to demonstrate its ability to adequately simulate soil N contents and N2O emissions from cropland soils in Europe. Mitigation scenarios and sensitivity analyses are also presented to demonstrate how ECOSSE can be used to estimate the impact of future climate and land-use change on N2O emissions.}, language = {en} } @article{YairBryanLaveeetal.2013, author = {Yair, Aaron and Bryan, Rorke B. and Lavee, Hanoch and Schwanghart, Wolfgang and Kuhn, Nikolaus J.}, title = {The resilience of a badland area to climate change in an arid environment}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {106}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2012.04.006}, pages = {12 -- 21}, year = {2013}, abstract = {Badlands have long been considered as model landscapes due to their perceived close relationship between form and process. The often intense features of erosion have also attracted many geomorphologists because the associated high rates of erosion appeared to offer the opportunity for studying surface processes and the resulting forms. Recently, the perceived simplicity of badlands has been questioned because the expected relationships between driving forces for erosion and the resulting sediment yield could not be observed. Further, a high variability in erosion and sediment yield has been observed across scales. Finally, denudation based on currently observed erosion rates would have lead to the destruction of most badlands a long time ago. While the perceived simplicity of badlands has sparked a disproportional (compared to the land surface they cover) amount of research, our increasing amount of information has not necessarily increased our understanding of badlands in equal terms. Overall, badlands appear to be more complex than initially assumed. In this paper, we review 40 years of research in the Zin Valley Badlands in Israel to reconcile some of the conflicting results observed there and develop a perspective on the function of badlands as model landscapes. While the data collected in the Zin Valley clearly confirm that spatial and temporal patterns of geomorphic processes and their interaction with topography and surface properties have to be understood, we still conclude that the process of realizing complexity in the "simple" badlands has a model function both for our understanding as well as perspective on all landscape systems.}, language = {en} } @article{SchaldachWimmerKochetal.2013, author = {Schaldach, R{\"u}diger and Wimmer, Florian and Koch, Jennifer and Volland, Jan and Geissler, Katja and K{\"o}chy, Martin}, title = {Model-based analysis of the environmental impacts of grazing management on Eastern Mediterranean ecosystems in Jordan}, series = {Journal of environmental management}, volume = {127}, journal = {Journal of environmental management}, number = {9}, publisher = {Elsevier}, address = {London}, issn = {0301-4797}, doi = {10.1016/j.jenvman.2012.11.024}, pages = {S84 -- S95}, year = {2013}, abstract = {Eastern Mediterranean ecosystems are prone to desertification when under grazing pressure. Therefore, management of grazing intensity plays a crucial role to avoid or to diminish land degradation and to sustain both livelihoods and ecosystem functioning. The dynamic land-use model LandSHIFT was applied to a case study on the country level for Jordan. The impacts of different stocking densities on the environment were assessed through a set of simulation experiments for various combinations of climate input and assumptions about the development of livestock numbers. Indicators used for the analysis include a set of landscape metrics to account for habitat fragmentation and the "Human Appropriation of Net Primary Production" (HANPP), i.e., the difference between the amount of net primary production (NPP) that would be available in a natural ecosystem and the amount of NPP that remains under human management. Additionally, the potential of the economic valuation of ecosystem services, including landscape and grazing services, as an analysis concept was explored. We found that lower management intensities had a positive effect on HANPP but at the same time resulted in a strong increase of grazing area. This effect was even more pronounced under climate change due to a predominantly negative effect on the biomass productivity of grazing land. Also Landscape metrics tend to indicate decreasing habitat fragmentation as a consequence of lower grazing pressure. The valuation of ecosystem services revealed that low grazing intensity can lead to a comparatively higher economic value on the country level average. The results from our study underline the importance of considering grazing management as an important factor to manage dry-land ecosystems in a sustainable manner.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2013, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal P. and Brunet, Jorg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Shevtsova, Anna and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Climatic control of forest herb seed banks along a latitudinal gradient}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {22}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12068}, pages = {1106 -- 1117}, year = {2013}, abstract = {Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.}, language = {en} } @article{WiesmeierPrietzelBartholdetal.2013, author = {Wiesmeier, Martin and Prietzel, J{\"o}rg and Barthold, Frauke Katrin and Sp{\"o}rlein, Peter and Geuss, Uwe and Hangen, Edzard and Reischl, Arthur and Schilling, Bernd and von L{\"u}tzow, Margit and K{\"o}gel-Knabner, Ingrid}, title = {Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) - Implications for carbon sequestration}, series = {Forest ecology and management}, volume = {295}, journal = {Forest ecology and management}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2013.01.025}, pages = {162 -- 172}, year = {2013}, abstract = {Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1 m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8 kg m(-2) which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35\% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change.}, language = {en} } @article{BartholdWiesmeierBreueretal.2013, author = {Barthold, Frauke Katrin and Wiesmeier, Martin and Breuer, L. and Frede, Hans-Georg and Wu, J. and Blank, F. Benjamin}, title = {Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia}, series = {Journal of arid environments}, volume = {88}, journal = {Journal of arid environments}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2012.08.004}, pages = {194 -- 205}, year = {2013}, abstract = {The spatial distribution of soil types is controlled by a set of environmental factors such as climate, organisms, parent material and topography as well as time and space. A change of these factors will lead to a change in the spatial distribution of soil types. In this study, we use a digital soil mapping approach to improve our knowledge about major soil type distributing factors in the steppe regions of Inner Mongolia (China) which currently undergo tremendous environmental change, e.g. climate and land use change. We use Random Forests in an effort to map Reference Soil Groups according to the World Reference Base for Soil Resources (WRB) in the Xilin River catchment. We benefit from the superior prediction capabilities of RF and additional interpretive results in order to identify the major environmental factors that control spatial patterns of soil types. The nine WRB soil groups that were identified and spatially predicted for the study area are Arenosol, Calcisol, Cambisol, Chernozem, Cryosol, Gleysol, Kastanozem, Phaeozem and Regosol. Model and prediction performances of the RF model are high with an Out-of-Bag error of 51.6\% for the model and a misclassification error for the predicted map of 28.9\%. The main controlling factors of soil type distribution are land use, a set of topographic variables, geology and climate. However, land use and climate are of major importance and topography and geology are of minor importance. The visualizations of the predictions, the variable importance measures as result of RF and the comparisons of these with the spatial distribution of the environmental factors delivered additional, quantitative information of these controlling factors and revealed that intensively grazed areas are subjected to soil degradation. However, most of the area is still governed by natural soil forming processes which are driven by climate, topography and geology. Most importantly though, our study revealed that a shift towards warmer temperatures and lower precipitation regimes will lead to a change of the spatial distribution of RSGs towards steppe soils that store less carbon, i.e. a decrease of spatial extent of Phaeozems and an increase of spatial extent of Chernozems and Kastanozems.}, language = {en} } @article{TekkenCostaKropp2013, author = {Tekken, Vera and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Kropp, J{\"u}rgen}, title = {Increasing pressure, declining water and climate change in north-eastern Morocco}, series = {Journal of coastal conservation : planning and management}, volume = {17}, journal = {Journal of coastal conservation : planning and management}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1400-0350}, doi = {10.1007/s11852-013-0234-7}, pages = {379 -- 388}, year = {2013}, abstract = {The coastal stretch of north-eastern Mediterranean Morocco holds vitally important ecological, social, and economic functions. The implementation of large-scale luxury tourism resorts shall push socio-economic development and facilitate the shift from a mainly agrarian to a service economy. Sufficient water availability and intact beaches are among the key requirements for the successful realization of regional development plans. The water situation is already critical, additional water-intense sectors could overstrain the capacity of water resources. Further, coastal erosion caused by sea-level rise is projected. Regional climate change is observable, and must be included in regional water management. Long-term climate trends are assessed for the larger region (Moulouya basin) and for the near-coastal zone at Saidia. The amount of additional water demand is assessed for the large-dimensioned Saidia resort; including the monthly, seasonal and annual tourist per capita water need under inclusion of irrigated golf courses and garden areas. A shift of climate patterns is observed, a lengthening of the dry summer season, and as well a significant decline of annual precipitation. Thus, current water scarcity is mainly human-induced; however, climate change will aggravate the situation. As a consequence, severe environmental damage due to water scarcity is likely and could impinge on the quality of local tourism. The re-adjustment of current management routines is therefore essential. Possible adjustments are discussed and the analysis concludes with management recommendations for innovative regional water management of tourism facilities.}, language = {en} } @article{DolgenerFreudenbergerSchneeweissetal.2014, author = {Dolgener, Nicola and Freudenberger, L. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany}, series = {Regional environmental change}, volume = {14}, journal = {Regional environmental change}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-013-0468-9}, pages = {1063 -- 1072}, year = {2014}, abstract = {Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.}, language = {en} } @article{SommerKalbeEkstrometal.2014, author = {Sommer, Robert S. and Kalbe, Johannes and Ekstrom, Jonas and Benecke, Norbert and Liljegren, Ronnie}, title = {Range dynamics of the reindeer in Europe during the last 25,000 years}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12193}, pages = {298 -- 306}, year = {2014}, abstract = {Aim To understand the role and significance of the reindeer, Rangifer tarandus (Linnaeus, 1758), as a specific indicator in terms of late Quaternary biogeography and to determine the effects of global climate change on its range and local extinction dynamics at the end of the Ice Age. Location Late Pleistocene/early Holocene range of reindeer over all of central and western Europe, including southern Scandinavia and northern Iberia, but excluding Russia, Belarus and the Ukraine. Methods Radiocarbon-dated subfossil records of R. tarandus from both archaeological and natural deposits younger than 25,000 years were assembled in a database. The distribution area was divided into six representative regions. The C-14 dates were calibrated and plotted chronologically in maps in order to compare presence and absence and regional extinction patterns from one region to another. Main conclusions The late Quaternary record for reindeer in Europe during the last 25 kyr shows a climate-driven dispersal and retreat in response to climate change, with regional variations. The collapse of the mammoth steppe biome did not lead to the local extinction in Europe, as in the case of other megafaunal species. Rangifer tarandus co-existed for about 3000 years during the Late Glacial and early Holocene with typical temperate species such as red deer and roe deer in non-analogue faunal communities. The regional extinction at the end of the Pleistocene coincides with the transition from light open birch/pine forests to pine/deciduous forests.}, language = {en} } @article{CaronDeFrenneBrunetetal.2014, author = {Caron, Maria Mercedes and De Frenne, P. and Brunet, J. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Diekmann, M. and Graae, B. J. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, F. and Strimbeck, G. R. and Wulf, Monika and Verheyen, Kris}, title = {Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus}, series = {Plant ecology : an international journal}, volume = {215}, journal = {Plant ecology : an international journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-014-0343-x}, pages = {911 -- 925}, year = {2014}, abstract = {Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.}, language = {en} } @article{WischnewskiHerzschuhRuehlandetal.2014, author = {Wischnewski, Juliane and Herzschuh, Ulrike and Ruehland, Kathleen M. and Braeuning, Achim and Mischke, Steffen and Smol, John P. and Wang, Lily}, title = {Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data}, series = {Journal of paleolimnolog}, volume = {51}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-013-9747-1}, pages = {287 -- 302}, year = {2014}, abstract = {The Tibetan Plateau is a region that is highly sensitive to recent global warming, but the complexity and heterogeneity of its mountainous landscape can result in variable responses. In addition, the scarcity and brevity of regional instrumental and palaeoecological records still hamper our understanding of past and present patterns of environmental change. To investigate how the remote, high-alpine environments of the Nianbaoyeze Mountains, eastern Tibetan Plateau, are affected by climate change and human activity over the last similar to 600 years, we compared regional tree-ring studies with pollen and diatom remains archived in the dated sediments of Dongerwuka Lake (33.22A degrees N, 101.12A degrees E, 4,307 m a.s.l.). In agreement with previous studies from the eastern Tibetan Plateau, a strong coherence between our two juniper-based tree-ring chronologies from the Nianbaoyeze and the Anemaqin Mountains was observed, with pronounced cyclical variations in summer temperature reconstructions. A positive directional trend to warmer summer temperatures in the most recent decades, was, however, not observed in the tree-ring record. Likewise, our pollen and diatom spectra showed minimal change over the investigated time period. Although modest, the most notable change in the diatom relative abundances was a subtle decrease in the dominant planktonic Cyclotella ocellata and a concurrent increase in small, benthic fragilarioid taxa in the similar to 1820s, suggesting higher ecosystem variability. The pollen record subtly indicates three periods of increased cattle grazing activity (similar to 1400-1480 AD, similar to 1630-1760 AD, after 1850 AD), but shows generally no significant vegetation changes during past similar to 600 years. The minimal changes observed in the tree-ring, diatom and pollen records are consistent with the presence of localised cooling centres that are evident in instrumental and tree-ring data within the southeastern and eastern Tibetan Plateau. Given the minor changes in regional temperature records, our complacent palaeoecological profiles suggest that climatically induced ecological thresholds have not yet been crossed in the Nianbaoyeze Mountains region.}, language = {en} } @article{LemkeKolbGraaeetal.2015, author = {Lemke, Isgard H. and Kolb, Annette and Graae, Bente J. and De Frenne, Pieter and Acharya, Kamal P. and Blandino, Cristina and Brunet, Jorg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Heinken, Thilo and Hermy, Martin and Liira, Jaan and Schmucki, Reto and Shevtsova, Anna and Verheyen, Kris and Diekmann, Martin}, title = {Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient}, series = {Plant ecology : an international journal}, volume = {216}, journal = {Plant ecology : an international journal}, number = {11}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-015-0534-0}, pages = {1523 -- 1536}, year = {2015}, abstract = {Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change.}, language = {en} } @article{GeyerStrixnerKreftetal.2015, author = {Geyer, Juliane and Strixner, Lena and Kreft, Stefan and Jeltsch, Florian and Ibisch, Pierre L.}, title = {Adapting conservation to climate change: a case study on feasibility and implementation in Brandenburg, Germany}, series = {Regional environmental change}, volume = {15}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-014-0609-9}, pages = {139 -- 153}, year = {2015}, abstract = {Conservation actions need to account for global climate change and adapt to it. The body of the literature on adaptation options is growing rapidly, but their feasibility and current state of implementation are rarely assessed. We discussed the practicability of adaptation options with conservation managers analysing three fields of action: reducing the vulnerability of conservation management, reducing the vulnerability of conservation targets (i.e. biodiversity) and climate change mitigation. For all options, feasibility, current state of implementation and existing obstacles to implementation were analysed, using the Federal State of Brandenburg, Germany, as a case study. Practitioners considered a large number of options useful, most of which have already been implemented at least in part. Those options considered broadly implemented resemble mainly conventional measures of conservation without direct relation to climate change. Managers are facing several obstacles for adapting to climate change, including political reluctance to change, financial and staff shortages in conservation administrations and conflictive EU funding schemes in agriculture. A certain reluctance to act, due to the high degree of uncertainty with regard to climate change scenarios and impacts, is widespread. A lack of knowledge of appropriate methods such as adaptive management often inhibits the implementation of adaptation options in the field of planning and management. Based on the findings for Brandenburg, we generally conclude that it is necessary to focus in particular on options that help to reduce vulnerability of conservation management itself, i.e. those that enhance management effectiveness. For instance, adaptive and proactive risk management can be applied as a no-regrets option, independently from specific climate change scenarios or impacts, strengthening action under uncertainty.}, language = {en} } @article{CaronDeFrenneChabrerieetal.2015, author = {Caron, Maria Mercedes and De Frenne, P. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Decocq, G. and Diekmann, M. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, F. and Strimbeck, G. R. and Wulf, M. and Verheyen, Kris}, title = {Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species}, series = {Flora : morphology, distribution, functional ecology of plants}, volume = {214}, journal = {Flora : morphology, distribution, functional ecology of plants}, publisher = {Elsevier}, address = {Jena}, issn = {0367-2530}, doi = {10.1016/j.flora.2015.05.005}, pages = {24 -- 33}, year = {2015}, language = {en} } @article{GroeneveldJohstKawaguchietal.2015, author = {Groeneveld, J{\"u}rgen and Johst, Karin and Kawaguchi, So and Meyer, Bettina and Teschke, Mathias and Grimm, Volker}, title = {How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {303}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2015.02.009}, pages = {78 -- 86}, year = {2015}, abstract = {The Southern Ocean ecosystem is characterized by extreme seasonal changes in environmental factors such as day length, sea ice extent and food availability. The key species Antarctic krill (Euphausia superba) has evolved metabolic and behavioural seasonal rhythms to cope with these seasonal changes. We investigate the switch between a physiological less active and active period for adult krill, a rhythm which seems to be controlled by internal biological clocks. These biological clocks can be synchronized by environmental triggers such as day length and food availability. They have evolved for particular environmental regimes to synchronize predictable seasonal environmental changes with important life cycle functions of the species. In a changing environment the time when krill is metabolically active and the time of peak food availability may not overlap if krill's seasonal activity is solely determined by photoperiod (day length). This is especially true for the Atlantic sector of the Southern Ocean where the spatio-temporal ice cover dynamics are changing substantially with rising average temperatures. We developed an individual-based model for krill to explore the impact of photoperiod and food availability on the growth and demographics of krill. We simulated dynamics of local krill populations (with no movement of krill assumed) along a south-north gradient for different triggers of metabolic activity and different levels of food availability below the ice. We also observed the fate of larval krill which cannot switch to low metabolism and therefore are likely to overwinter under ice. Krill could only occupy the southern end of the gradient, where algae bloom only lasts for a short time, when alternative food supply under the ice was high and metabolic activity was triggered by photoperiod. The northern distribution was limited by lack of overwintering habitat for krill larvae due to short duration of sea ice cover even for high food content under the ice. The variability of the krill's length-frequency distributions varied for different triggers of metabolic activity, but did not depend on the sea ice extent. Our findings suggest a southward shift of krill populations due to reduction in the spatial sea ice extent, which is consistent with field observations. Overall, our results highlight the importance of the explicit consideration of spatio-temporal sea ice dynamics especially for larval krill together with temporal synchronization through internal clocks, triggered by environmental factors (photoperiod and food) in adult krill for the population modelling of krill. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{OlonscheckWaltherLuedekeetal.2015, author = {Olonscheck, Mady and Walther, Carsten and L{\"u}deke, Matthias K. B. and Kropp, J{\"u}rgen}, title = {Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands}, series = {Energy}, volume = {90}, journal = {Energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0360-5442}, doi = {10.1016/j.energy.2015.07.080}, pages = {560 -- 569}, year = {2015}, abstract = {In order to achieve meaningful climate protection targets at the global scale, each country is called to set national energy policies aimed at reducing energy consumption and carbon emissions. By calculating the monthly heating energy demand of dwellings in the Netherlands, our case study country, we contrast the results with the corresponding aspired national targets. Considering different future population scenarios, renovation measures and temperature variations, we show that a near zero energy demand in 2050 could only be reached with very ambitious renovation measures. While the goal of reducing the energy demand of the building sector by 50\% until 2030 compared to 1990 seems feasible for most provinces and months in the minimum scenario, it is impossible in our scenario with more pessimistic yet still realistic assumptions regarding future developments. Compared to the current value, the annual renovation rate per province would need to be at least doubled in order to reach the 2030 target independent of reasonable climatic and population changes in the future. Our findings also underline the importance of policy measures as the annual renovation rate is a key influencing factor regarding the reduction of the heating energy demand in dwellings. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HundechaSunyerLawrenceetal.2016, author = {Hundecha, Yeshewatesfa and Sunyer, Maria A. and Lawrence, Deborah and Madsen, Henrik and Willems, Patrick and B{\"u}rger, Gerd and Kriauciuniene, Jurate and Loukas, Athanasios and Martinkova, Marta and Osuch, Marzena and Vasiliades, Lampros and von Christierson, Birgitte and Vormoor, Klaus Josef and Yuecel, Ismail}, title = {Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe}, series = {Journal of hydrology}, volume = {541}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.08.033}, pages = {1273 -- 1286}, year = {2016}, abstract = {The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171 km(2) in size and cover different climate zones. 15 regional climate model outputs and 8 different statistical downscaling methods, which are broadly categorized as change factor and bias correction based methods, were used for the comparative analyses. Different hydrological models were implemented in different catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where the flooding is mainly caused by spring/summer snowmelt, the downscaling methods project a decrease in the extreme flows in three of the four catchments considered. A major portion of the variability in the projected changes in the extreme flow indices is attributable to the variability of the climate model ensemble, although the statistical downscaling methods contribute 35-60\% of the total variance. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{VormoorLawrenceSchlichtingetal.2016, author = {Vormoor, Klaus Josef and Lawrence, Deborah and Schlichting, Lena and Wilson, Donna and Wong, Wai Kwok}, title = {Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway}, series = {Journal of hydrology}, volume = {538}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.03.066}, pages = {33 -- 48}, year = {2016}, abstract = {There is increasing evidence for recent changes in the intensity and frequency of heavy precipitation and in the number of days with snow cover in many parts of Norway. The question arises as to whether these changes are also discernable with respect to their impacts on the magnitude and frequency of flooding and on the processes producing high flows. In this study, we tested up to 211 catchments for trends in peak flow discharge series by applying the Mann-Kendall test and Poisson regression for three different time periods (1962-2012, 1972-2012, 1982-2012). Field-significance was tested using a bootstrap approach. Over threshold discharge events were classified into rainfall vs. snowmelt dominated floods, based on a simple water balance approach utilizing a nationwide 1 x 1 km(2) gridded data set with daily observed rainfall and simulated snowmelt data. Results suggest that trends in flood frequency are more pronounced than trends in flood magnitude and are more spatially consistent with observed changes in the hydrometeorological drivers. Increasing flood frequencies in southern and western Norway are mainly due to positive trends in the frequency of rainfall dominated events, while decreasing flood frequencies in northern Norway are mainly the result of negative trends in the frequency of snowmelt dominated floods. Negative trends in flood magnitude are found more often than positive trends, and the regional patterns of significant trends reflect differences in the flood generating processes (FGPs). The results illustrate the benefit of distinguishing FGPs rather than simply applying seasonal analyses. The results further suggest that rainfall has generally gained an increasing importance for the generation of floods in Norway, while the role of snowmelt has been decreasing and the timing of snowmelt dominated floods has become earlier. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{FerTietjenJeltsch2016, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian}, title = {High-resolution modelling closes the gap between data and model simulations for Mid-Holocene and present-day biomes of East Africa}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {444}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.12.001}, pages = {144 -- 151}, year = {2016}, abstract = {East Africa hosts a striking diversity of terrestrial ecosystems, which vary both in space and time due to complex regional topography and a dynamic climate. The structure and functioning of these ecosystems under this environmental setting can be studied with dynamic vegetation models (DVMs) in a spatially explicit way. Yet, regional applications of DVMs to East Africa are rare and a comprehensive validation of such applications is missing. Here, we simulated the present-day and mid-Holocene vegetation of East Africa with the DVM, LPJ-GUESS and we conducted an exhaustive comparison of model outputs with maps of potential modern vegetation distribution, and with pollen records of local change through time. Overall, the model was able to reproduce the observed spatial patterns of East African vegetation. To see whether running the model at higher spatial resolutions (10\&\#8242; × 10\&\#8242;) contribute to resolve the vegetation distribution better and have a better comparison scale with the observational data (i.e. pollen data), we run the model with coarser spatial resolution (0.5° × 0.5°) for the present-day as well. Both the area- and point-wise comparison showed that a higher spatial resolution allows to better describe spatial vegetation changes induced by the complex topography of East Africa. Our analysis of the difference between modelled mid-Holocene and modern-day vegetation showed that whether a biome shifts to another is best explained by both the amount of change in precipitation it experiences and the amount of precipitation it received originally. We also confirmed that tropical forest biomes were more sensitive to a decrease in precipitation compared to woodland and savanna biomes and that Holocene vegetation changes in East Africa were driven not only by changes in annual precipitation but also by changes in its seasonality.}, language = {en} }