@phdthesis{Georgiev2017, author = {Georgiev, Vasil}, title = {Light-induced transformations in biomembranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395309}, school = {Universit{\"a}t Potsdam}, pages = {81}, year = {2017}, abstract = {Cellular membranes constantly experience remodeling, as exemplified by morphological changes during endo- and exocytosis. Regulation of membrane morphology is essential for these processes. In this work, we attempt to establish a regulation path based on the use of photoswitches exhibiting conformational changes in model membranes, namely, giant unilamellar vesicles (GUVs). The mechanism of the changes in the GUVs' morphology caused by isomerization of the photosensitive molecules has been previously explored but still remains elusive. We examine the morphological reshaping of GUVs in the presence of the photoswitch o-tetrafluoroazobenzene (F-azo) and show that the mechanism behind the resulting morphological changes involves both an increase in the membrane area and generation of a positive spontaneous curvature. First, we characterize the partitioning of F-azo in a single-component membrane using both experimental and computational approaches. The partition coefficient calculated from molecular dynamic simulations agrees with experimental data obtained with size-exclusion chromatography. Then, we implement the approach of vesicle electrodeformation in order to assess the increase in the membrane area, which is observed as a result of the conformational change of F-azo. Finally, the local and the effective membrane spontaneous curvatures were estimated from the observed shapes of vesicles exhibiting outward budding. We then extend the application of the F-azo to multicomponent lipid membranes, which exhibit a coexistence of domains in different liquid phases due to a miscibility gap between the lipids. We perform initial experiments to investigate whether F-azo can be employed to modulate the lateral lipid packing and organization. We observe either complete mixing of the domains or the appearing of disordered domains within the domains of more ordered phase. The type of behavior observed in response to the photoisomerization of F-azo was dependent on the used lipid composition. We believe that the findings introduced here will have an impact in understanding and controlling both lipid phase modulation and regulation of the membrane morphology in membrane systems.}, language = {en} } @misc{FabianZlatanovićMutzetal.2018, author = {Fabian, Jenny and Zlatanović, Sanja and Mutz, Michael and Grossart, Hans-Peter and Geldern, Robert van and Ulrich, Andreas and Gleixner, Gerd and Premke, Katrin}, title = {Environmental control on microbial turnover of leaf carbon in streams}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {693}, issn = {1866-8372}, doi = {10.25932/publishup-42633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426336}, pages = {16}, year = {2018}, abstract = {In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.}, language = {en} } @misc{McQuadeO'BrienDoerretal.2013, author = {McQuade, D. Tyler and O'Brien, Alexander G. and D{\"o}rr, Markus and Rajaratnam, Rajathees and Eisold, Ursula and Monnanda, Bopanna and Nobuta, Tomoya and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Meggers, Eric and Seeberger, Peter H.}, title = {Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95214}, pages = {4067 -- 4070}, year = {2013}, abstract = {Pyridocarbazoles when ligated to transition metals yield high affinity kinase inhibitors. While batch photocyclizations enable the synthesis of these heterocycles, the non-oxidative Mallory reaction only provides modest yields and difficult to purify mixtures. We demonstrate here that a flow-based Mallory cyclization provides superior results and enables observation of a clear isobestic point. The flow method allowed us to rapidly synthesize ten pyridocarbazoles and for the first time to document their interesting photophysical attributes. Preliminary characterization reveals that these molecules might be a new class of fluorescent bioprobe.}, language = {en} }