@article{YamazakiStolleMatzkaetal.2018, author = {Yamazaki, Yosuke and Stolle, Claudia and Matzka, J{\"u}rgen and Liu, Huixin and Tao, Chihiro}, title = {Interannual variability of the daytime equatorial ionospheric electric field}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025165}, pages = {4241 -- 4256}, year = {2018}, abstract = {Understanding the variability of the ionosphere is important for the prediction of space weather and climate. Recent studies have shown that forcing from the lower atmosphere plays a significant role for the short-term (day-to-day) variability of the low-latitude ionosphere. The present study aims to assess the importance of atmospheric forcing for the variability of the daytime equatorial ionospheric electric field on the interannual (year-to-year) time scale. Magnetic field measurements from Huancayo (12.05 degrees S, 75.33 degrees W) are used to augment the equatorial vertical plasma drift velocity (V-Z) measurements from the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere radar during 2001-2016. V-Z can be regarded as a measure of the zonal electric field. After removing the seasonal variation of similar to 10m/s, midday values of V-Z show an interannual variation of similar to 2m/s with an oscillation period of 2-3years. No evidence of solar cycle influence is found. The Ground-to-topside Atmosphere-Ionosphere model for Aeronomy, which takes into account realistic atmospheric variability below 30km, reproduces the pattern of the observed interannual variation without having to include variable forcing from the magnetosphere. The results indicate that lower atmospheric forcing plays a dominant role for the observed interannual variability of V-Z at 1200 local time.}, language = {en} } @article{SiddiquiYamazakiStolleetal.2018, author = {Siddiqui, Tarique Adnan and Yamazaki, Yosuke and Stolle, Claudia and L{\"u}hr, Hermann and Matzka, J{\"u}rgen and Maute, Astrid and Pedatella, Nicholas}, title = {Dependence of Lunar Tide of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL077510}, pages = {3801 -- 3810}, year = {2018}, abstract = {The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO. Plain Language Summary This study focuses on the vertical coupling between the polar stratosphere and equatorial ionosphere during sudden stratospheric warmings (SSWs). Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric migrating and nonmigrating tides, and these variabilities can be comparable to a moderate geomagnetic storm. Observations and modeling studies have found that the changes in the migrating semidiurnal solar and lunar tides are a major source of ionospheric variabilities during SSWs. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. Long-term ground-magnetometer recordings have been used in this study to estimate the variations induced in EEJ during SSWs due to the lunar semidiurnal tide in a statistical sense. The wintertime Arctic polar vortex and the occurrence of SSWs are modulated by solar flux conditions and the phases of quasi-biennial oscillation. In this work, we find the first evidence of lunar tidal modulation of EEJ due to quasi-biennial oscillation during SSWs. Our findings will be useful in providing improved predictions of ionospheric variations due to SSWs. The aeronomy community will be the most impacted by this paper.}, language = {en} }