@article{KwesigaKellingKerstingetal.2020, author = {Kwesiga, George and Kelling, Alexandra and Kersting, Sebastian and Sperlich, Eric and von Nickisch-Rosenegk, Markus and Schmidt, Bernd}, title = {Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity}, series = {Journal of natural products}, volume = {83}, journal = {Journal of natural products}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.0c00932}, pages = {3445 -- 3453}, year = {2020}, abstract = {The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.}, language = {en} } @article{KerstingRauschBieretal.2014, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis}, series = {Malaria journal}, volume = {13}, journal = {Malaria journal}, publisher = {BioMed Central}, address = {London}, issn = {1475-2875}, doi = {10.1186/1475-2875-13-99}, pages = {9}, year = {2014}, abstract = {Background: Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing. Methods: A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38 C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay. Results: The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n = 77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45 degrees C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. Conclusions: Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in resource-limited settings. The system requires none or only little instrumentation for the nucleic acid amplification reaction and the read-out is possible with the naked eye. Showing the same sensitivity and specificity as comparable diagnostic methods but simultaneously increasing reaction speed and dramatically reducing assay requirements, the method has potential to become a true point-of-care test for the malaria parasite.}, language = {en} } @misc{KerstingRauschBieretal.2014, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {948}, issn = {1866-8372}, doi = {10.25932/publishup-43156}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431562}, pages = {11}, year = {2014}, abstract = {Background Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing. Methods A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38°C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay. Results The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n = 77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45°C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. Conclusions Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in resource-limited settings. The system requires none or only little instrumentation for the nucleic acid amplification reaction and the read-out is possible with the naked eye. Showing the same sensitivity and specificity as comparable diagnostic methods but simultaneously increasing reaction speed and dramatically reducing assay requirements, the method has potential to become a true point-of-care test for the malaria parasite.}, language = {en} } @article{KerstingRauschBieretal.2014, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens}, series = {Microchimica acta : analytical sciences based on micro- and nanomaterials}, volume = {181}, journal = {Microchimica acta : analytical sciences based on micro- and nanomaterials}, number = {13-14}, publisher = {Springer}, address = {Wien}, issn = {0026-3672}, doi = {10.1007/s00604-014-1198-5}, pages = {1715 -- 1723}, year = {2014}, abstract = {We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 degrees C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in < 20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics.}, language = {en} } @misc{KerstingRauschBieretal.2014, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {730}, issn = {1866-8372}, doi = {10.25932/publishup-43047}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430479}, pages = {1715 -- 1723}, year = {2014}, abstract = {We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics.}, language = {en} } @phdthesis{Kersting2017, author = {Kersting, Sebastian}, title = {Isothermal nucleic acid amplification for the detection of infectious pathogens}, pages = {215}, year = {2017}, language = {en} } @article{LaroqueReifarthSperlingetal.2020, author = {Laroque, Sophie and Reifarth, Martin and Sperling, Marcel and Kersting, Sebastian and Kloepzig, Stefanie and Budach, Patrick and Hartlieb, Matthias and Storsberg, Joachim}, title = {Impact of multivalence and self-assembly in the design of polymeric antimicrobial peptide mimics}, series = {ACS applied materials \& interfaces}, volume = {12}, journal = {ACS applied materials \& interfaces}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.0c05944}, pages = {30052 -- 30065}, year = {2020}, abstract = {Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems.}, language = {en} } @article{KerstingRauschBieretal.2018, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia}, series = {Analytical biochemistry : methods in the biological sciences}, volume = {550}, journal = {Analytical biochemistry : methods in the biological sciences}, publisher = {Elsevier}, address = {San Diego}, issn = {0003-2697}, doi = {10.1016/j.ab.2018.04.014}, pages = {54 -- 60}, year = {2018}, abstract = {Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye.}, language = {en} }