@phdthesis{Kudriavtseva2023, author = {Kudriavtseva, Anna}, title = {Interactions between tectonics, climate, and surface processes in the Kyrgyz Tian Shan}, doi = {10.25932/publishup-60372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603728}, school = {Universit{\"a}t Potsdam}, pages = {XV, 164}, year = {2023}, abstract = {During the Cenozoic, global cooling and uplift of the Tian Shan, Pamir, and Tibetan plateau modified atmospheric circulation and reduced moisture supply to Central Asia. These changes led to aridification in the region during the Neogene. Afterwards, Quaternary glaciations led to modification of the landscape and runoff. In the Issyk-Kul basin of the Kyrgyz Tian Shan, the sedimentary sequences reflect the development of the adjacent ranges and local climatic conditions. In this work, I reconstruct the late Miocene - early Pleistocene depositional environment, climate, and lake development in the Issyk-Kul basin using facies analyses and stable δ18O and δ13C isotopic records from sedimentary sections dated by magnetostratigraphy and 26Al/10Be isochron burial dating. Also, I present 10Be-derived millennial-scale modern and paleo-denudation rates from across the Kyrgyz Tian Shan and long-term exhumation rates calculated from published thermochronology data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan. In the Issyk-Kul basin, the style of fluvial deposition changed at ca. 7 Ma, and aridification in the basin commenced concurrently, as shown by magnetostratigraphy and the δ18O and δ13C data. Lake formation commenced on the southern side of the basin at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. 26Al/10Be isochron burial dating and paleocurrent analysis show that the Kungey range to the north of the basin grew eastward, leading to a change from fluvial-alluvial deposits to proximal alluvial fan conglomerates at 5-4 Ma in the easternmost part of the basin. This transition occurred at 2.6-2.8 Ma on the southern side of the basin, synchronously with the intensification of the Northern Hemisphere glaciation. The paleo-denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only the millennial-scale denudation rates record an acceleration of denudation. This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at ca. 7 Ma and a subsequent aridification in the Issyk-Kul basin. Increased subsidence and local tectonically-induced river system reorganization on the southern side of the basin enabled lake formation at ca. 5 Ma, while growth of the Kungey range blocked westward-draining rivers and led to sediment starvation and lake expansion. Denudational response of the Kyrgyz Tian Shan landscape is delayed due to aridity and only substantial cooling during the late Quaternary glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.}, language = {en} } @article{LuWuChengetal.2017, author = {Lu, Honghua and Wu, Dengyun and Cheng, Lu and Zhang, Tianqi and Xiong, Jianguo and Zheng, Xiangmin and Li, Youli}, title = {Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {299}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2017.09.037}, pages = {12 -- 23}, year = {2017}, abstract = {Alluvial units are important in understanding the interactions of antecedent drainage evolution with fold growth along the flanks of active orogenic belts. This is demonstrated by the Anjihai River in the northern Chinese Tian Shan foreland, which at present flows northward cutting sequentially through the Nananjihai anticline, the Huoerguos anticline, and the Anjihai anticline. Three episodes of alluviation designated as fans F-a, F-b, and F-c are identified for the Anjihai River. These three alluvial terrain features comprise a series of terraces, where the topographic characteristics, geomorphologic structure, and up-warped longitudinal profiles indicate continuous uplift and lateral propagation of the Halaande anticline and the Anjihai anticline over the past 50 Icy. Shortly after similar to 3.6 ka when the oldest terrace during the period of the fan Fb sedimentation was formed, significant rock uplift at the overlapping zone of the Anjihai anticline and the Halaande anticline led to the eastward deflection of the antecedent Anjihai River. A series of local terraces with elevation decreasing eastward indicate the gradual eastward migration of the channel of the Anjihai River during the period of the fan F-c sedimentation. Finally the Anjihai River occupied the previous course of the Jingou River when the latter was deflected eastward in response to rock uplift of the Anjihai anticline, presently flowing across the eastern tip of the Anjihai anticline. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{LuChengWangetal.2017, author = {Lu, Honghua and Cheng, Lu and Wang, Zhen and Zhang, Tianqi and Lu, Yanwu and Zhao, Junxiang and Li, Youli and Zheng, Xiangmin}, title = {Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {179}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.017}, pages = {167 -- 181}, year = {2017}, abstract = {This work focuses on the incision process over the Tuostai anticline, a fold of the proximal structure Belt I in the northern Chinese Tian Shan foreland, where the Sikeshu River has incised deeply into the alluvial gravels and the fold's underlying bedrock strata. Field investigation and geomorphic mapping define five terraces of the Sikeshu River (designated as T1 to T5 from oldest to youngest) preserved within the Tuostai anticline. 10Be surface exposure dating and optically stimulated luminescence dating constrain stabilization of the highest three terrace surfaces at about 80 ka (T1), 16 ka (T2), and 15 ka (T3), respectively. Around 16 ka, the calculated river incision rates significantly increase from <2 mm/yr to >6 mm/yr. Undeformed longitudinal profiles of terraces T2, T3 and T4 over the Tuostai anticline suggest that this structure may have been tectonically inactive since stabilization of these three terraces. We thus think that the observed rapid river incision over the Tuostai anticline has not been largely forced by tectonic uplift. Instead, the progressively warmer and wetter palaeoclimatic condition within the Tian Shan range and its surrounding area during the period of ∼20-10 ka may have enhanced river incision across the Tuostai anticline. A reduced sediment/water ratio might have lowered the gradient of the Sikeshu River.}, language = {en} } @article{YangDupontNivetJolivetetal.2015, author = {Yang, Wei and Dupont-Nivet, Guillaume and Jolivet, Marc and Guo, Zhaojie and Bougeois, Laurie and Bosboom, Roderic and Zhang, Ziya and Zhu, Bei and Heilbronn, Gloria}, title = {Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {644}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2015.01.003}, pages = {122 -- 137}, year = {2015}, abstract = {The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of the India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows that the range grew through several tectonic pulses since similar to 25 Ma, however the early Cenozoic history remains poorly constrained. The time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation is particularly enigmatic. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age were recently dated. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked increase in accumulation rates at 19-18 Ma. This implies that the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20 to 18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggests far-field deformation from the India-Asia collision zone affected the Tian Shan and the Talas Fergana fault by early Miocene. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} }