@article{MelnickMorenoQuinterosetal.2017, author = {Melnick, Daniel and Moreno, Marcos and Quinteros, Javier and Carlos Baez, Juan and Deng, Zhiguo and Li, Shaoyang and Oncken, Onno}, title = {The super-interseismic phase of the megathrust earthquake cycle in Chile}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071845}, pages = {784 -- 791}, year = {2017}, abstract = {Along a subduction zone, great megathrust earthquakes recur either after long seismic gaps lasting several decades to centuries or over much shorter periods lasting hours to a few years when cascading successions of earthquakes rupture nearby segments of the fault. We analyze a decade of continuous Global Positioning System observations along the South American continent to estimate changes in deformation rates between the 2010 Maule (M8.8) and 2015 Illapel (M8.3) Chilean earthquakes. We find that surface velocities increased after the 2010 earthquake, in response to continental-scale viscoelastic mantle relaxation and to regional-scale increased degree of interplate locking. We propose that increased locking occurs transiently during a super-interseismic phase in segments adjacent to a megathrust rupture, responding to bending of both plates caused by coseismic slip and subsequent afterslip. Enhanced strain rates during a super-interseismic phase may therefore bring a megathrust segment closer to failure and possibly triggered the 2015 event.}, language = {en} } @phdthesis{Hakimhashemi2009, author = {Hakimhashemi, Amir Hossein}, title = {Time-dependent occurrence rates of large earthquakes in the Dead Sea fault zone and applications to probabilistic seismic hazard assessments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52486}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die relativ hohe seismische Aktivit{\"a}t der Tote-Meer-St{\"o}rungszone (Dead Sea Fault Zone - DSFZ) ist mit einem hohen Gefahrenpotential verbunden, welches zu einem erheblichen Erdbebenrisiko f{\"u}r die Ballungszentren in den L{\"a}ndern Syrien, Libanon, Pal{\"a}stina, Jordanien und Israel f{\"u}hrt. Eine Vielzahl massiver, zerst{\"o}rerischer Erdbeben hat sich in diesem Raum in den letzten zwei Jahrtausenden ereignet. Ihre Wiederholungsrate zeigt Anzeichen f{\"u}r eine zeitliche Abh{\"a}ngigkeit, insbesondere wenn lange Zeitr{\"a}ume in Betracht gezogen werden. Die Ber{\"u}cksichtigung der zeitlichen Abh{\"a}ngigkeit des Auftretens von Erdbeben ist f{\"u}r eine realistische seismische Gef{\"a}hrdungseinsch{\"a}tzung von großer Bedeutung. Ziel der vorliegenden Arbeit ist es, anhand des zeitabh{\"a}ngigen Auftretens von Erdbeben eine robuste wahrscheinlichkeitstheoretische seismische Gef{\"a}hrdungseinsch{\"a}tzung am Beispiel der DSFZ zu entwickeln. Mittels dieser Methode soll die zeitliche Abh{\"a}ngigkeit des Auftretens von großen Erdbeben (Mw ≥ 6) untersucht und somit eine Gef{\"a}hrdungseinsch{\"a}tzung f{\"u}r das Untersuchungsgebiet getroffen werden. Prim{\"a}r gilt es zu pr{\"u}fen, ob das Auftreten von großen Erdbeben tats{\"a}chlich einer zeitlichen Abh{\"a}ngigkeit unterliegt und wenn ja, inwiefern diese bestimmt werden kann. Zu diesem Zweck werden insgesamt vier zeitabh{\"a}ngige statistische Verteilungen (Weibull, Gamma, Lognormal und Brownian Passage Time (BPT)) sowie die zeitunabh{\"a}ngige Exponentialverteilung (Poisson-Prozess) getestet. Zur Absch{\"a}tzung der jeweiligen Modellparameter wird eine modifizierte Methode der gewichteten Maximum-Likelihood-Sch{\"a}tzung (MLE) verwendet. Um einzusch{\"a}tzen, ob die Wiederholungsrate von Erdbeben einer unimodalen oder multimodalen Form folgt, wird ein nichtparametrischer Bootstrap-Test f{\"u}r Multimodalit{\"a}t durchgef{\"u}hrt. Im Falle einer multimodalen Form wird neben der MLE zus{\"a}tzlich eine Erwartungsmaximierungsmethode (EM) herangezogen. Zur Auswahl des am besten geeigneten Modells wird zum einem das Bayesschen Informationskriterium (BIC) und zum anderen der modifizierte Kolmogorow-Smirnow-Goodness-of-Fit-Test angewendet. Abschließend werden mittels der Bootstrap-Methode die Konfidenzintervalle der gesch{\"a}tzten Parameter berechnet. Als Datengrundlage werden Erdbeben mit Mw ≥ 6 seit dem Jahre 300 n. Chr. herangezogen. Das Untersuchungsgebiet erstreckt sich von 29.5° N bis 37° N und umfasst ein ca. 40 km breites Gebiet entlang der DSFZ. Aufgrund der seismotektonischen Situation im Untersuchungsgebiet wird zwischen einer s{\"u}dlichen, zentralen und n{\"o}rdlichen Subzone unterschieden. Dabei kann die s{\"u}dliche Subzone aus Mangel an Daten nicht f{\"u}r die Analysen herangezogen werden. Die Ergebnisse f{\"u}r die zentrale Subzone zeigen keinen signifikanten multimodalen Verlauf der Wiederholungsrate von Erdbeben. Des Weiteren ist kein signifikanter Unterschied zwischen den zeitabh{\"a}ngigen und dem zeitunabh{\"a}ngigem Modell zu verzeichnen. Da das zeitunabh{\"a}ngige Modell vergleichsweise einfach interpretierbar ist, wird die Wiederholungsrate von Erdbeben in dieser Subzone unter Annahme der Exponentialverteilungs-Hypothese abgesch{\"a}tzt. Sie wird demnach als zeitunabh{\"a}ngig betrachtet und betr{\"a}gt 9.72 * 10-3 Erdbeben (mit Mw ≥ 6) pro Jahr. Einen besonderen Fall stellt die n{\"o}rdliche Subzone dar. In diesem Gebiet tritt im Durchschnitt alle 51 Jahre ein massives Erdbeben (Mw ≥ 6) auf. Das letzte Erdbeben dieser Gr{\"o}ße ereignete sich 1872 und liegt somit bereits 137 Jahre zur{\"u}ck. Somit ist in diesem Gebiet ein Erdbeben dieser St{\"a}rke {\"u}berf{\"a}llig. Im statistischen Mittel liegt die Zeit zwischen zwei Erdbeben zu 96\% unter 137 Jahren. Zudem wird eine deutliche zeitliche Abh{\"a}ngigkeit der Erdbeben-Wiederauftretensrate durch die Ergebnisse der in der Arbeit neu entwickelten statistischen Verfahren best{\"a}tigt. Dabei ist festzustellen, dass die Wiederholungsrate insbesondere kurz nach einem Erdbeben eine sehr hohe zeitliche Abh{\"a}ngigkeit aufweist. Am besten repr{\"a}sentiert werden die seismischen Bedingungen in der genannten Subzone durch ein bi-modales Weibull-Weibull-Modell. Die Wiederholungsrate ist eine glatte Zeitfunktion, welche zwei H{\"a}ufungen von Datenpunkten in der Zeit nach dem Erdbeben zeigt. Dabei umfasst die erste H{\"a}ufung einen Zeitraum von 80 Jahren, ausgehend vom Zeitpunkt des jeweiligen Bebens. Innerhalb dieser Zeitspanne ist die Wiederholungsrate extrem zeitabh{\"a}ngig. Die Wiederholungsrate direkt nach einem Beben ist sehr niedrig und steigert sich in den folgenden 10 Jahren erheblich bis zu einem Maximum von 0.024 Erdbeben/Jahr. Anschließend sinkt die Rate und erreicht ihr Minimum nach weiteren 70 Jahren mit 0.0145 Erdbeben/Jahr. An dieses Minimum schließt sich die zweite H{\"a}ufung von Daten an, dessen Dauer abh{\"a}ngig von der Erdbebenwiederholungszeit ist. Innerhalb dieses Zeitfensters nimmt die Erdbeben-Wiederauftretensrate ann{\"a}hernd konstant um 0.015 Erdbeben/Jahr zu. Diese Ergebnisse bilden die Grundlage f{\"u}r eine zeitabh{\"a}ngige probabilistische seismische Gef{\"a}hrdungseinsch{\"a}tzung (PSHA) f{\"u}r die seismische Quellregion, die den n{\"o}rdlichen Raum der DSFZ umfasst.}, language = {en} } @article{GomezZapataZafrirPittoreetal.2022, author = {Gomez Zapata, Juan Camilo and Zafrir, Raquel and Pittore, Massimiliano and Merino, Yvonne}, title = {Towards a sensitivity analysis in seismic risk with probabilistic building exposure models}, series = {ISPRS International Journal of Geo-Information}, volume = {11}, journal = {ISPRS International Journal of Geo-Information}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi11020113}, pages = {38}, year = {2022}, abstract = {Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaiso and Vina del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment.}, language = {en} }