@phdthesis{Günther2023, author = {G{\"u}nther, Claudia-Susanne}, title = {Das Eigene und das Fremde}, school = {Universit{\"a}t Potsdam}, pages = {245}, year = {2023}, abstract = {Die vorliegende Arbeit stellt eine Untersuchung des Fremdverstehens von Lehrkr{\"a}ften im Mathematikunterricht dar. Mit ‚Fremdverstehen' soll dabei - in Anlehnung an den Soziologen Alfred Sch{\"u}tz - der Prozess bezeichnet werden, in welchem eine Lehrkraft versucht, das Verhalten einer Sch{\"u}lerin oder eines Sch{\"u}lers zu verstehen, indem sie dieses Verhalten auf ein Erleben zur{\"u}ckf{\"u}hrt, das ihm zugrunde gelegen haben k{\"o}nnte. Als ein wesentliches Merkmal des Prozesses stellt Sch{\"u}tz in seiner Theorie des Fremdverstehens heraus, dass das Fremdverstehen eines Menschen immer auch auf seinen eigenen Erlebnissen basiert. Aus diesem Grund wird in der Arbeit ein methodischer Zweischritt vorgenommen: Es werden zun{\"a}chst die mathematikbezogenen Erlebnisse zweier Lehrkr{\"a}fte nachgezeichnet, bevor dann ihr Fremdverstehen in konkreten Situationen im Mathematikunterricht rekonstruiert wird. In der ersten Teiluntersuchung (= der Rekonstruktion eigener Erlebnisse der untersuchten Lehrkr{\"a}fte) erfolgt die Datenerhebung mit Hilfe biographisch-narrativer Interviews, in denen die untersuchten Lehrkr{\"a}fte angeregt werden, ihre mathematikbezogene Lebensgeschichte zu erz{\"a}hlen. Die Analyse dieser Interviews wird im Sinne der rekonstruktiven Fallanalyse vorgenommen. Insgesamt f{\"u}hrt die erste Teiluntersuchung zu textlichen Darstellungen der rekonstruierten mathematikbezogenen Lebensgeschichte der untersuchten Mathematiklehrkr{\"a}fte. In der zweiten Teiluntersuchung (= der Rekonstruktion des Fremdverstehens der untersuchten Lehrkr{\"a}fte) werden dann narrative Interviews gef{\"u}hrt, in denen die untersuchten Lehrkr{\"a}fte von ihrem Fremdverstehen in konkreten Situationen im Mathematikunterricht erz{\"a}hlen. Die Analyse dieser Interviews erfolgt mit Hilfe eines dreischrittigen Analyseverfahrens, welches die Autorin eigens zum Zweck der Rekonstruktion von Fremdverstehen entwickelte. Am Ende dieser zweiten Teiluntersuchung werden sowohl das rekonstruierte Fremdverstehen der Lehrkr{\"a}fte in verschiedenen Unterrichtssituationen dargestellt als auch Strukturen, die sich in ihrem Fremdverstehen abzeichnen. Mit Hilfe einer theoretischen Verallgemeinerung werden schließlich - auf Basis der Ergebnisse der zweiten Teiluntersuchung - Aussagen {\"u}ber f{\"u}nf Merkmale des Fremdverstehens von Lehrkr{\"a}ften im Mathematikunterricht im Allgemeinen gewonnen. Mit diesen Aussagen vermag die Arbeit eine erste Beschreibung davon hervorzubringen, wie sich das Ph{\"a}nomen des Fremdverstehens von Lehrkr{\"a}ften im Mathematikunterricht ausgestalten kann.}, language = {de} } @book{RheinbergWendland2003, author = {Rheinberg, Falko and Wendland, Mirko}, title = {DFG-Projekt (Rh 14/8-1) Komponenten der Lernmotivation in Mathematik : Abschlussbericht}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6304}, publisher = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Abschlussbericht zum DFG-Projekt "Ver{\"a}nderung der Lernmotivation in Mathematik und Physik: eine Komponentenanalyse und der Einfluss elterlicher sowie schulischer Kontextfaktoren" Abstract: Dass die Lernmotivation besonders in mathematisch-naturwissenschaftlichen F{\"a}chern im Verlauf der Sekundarschulzeit sinkt, kann als gesichert gelten (Krapp, 1998). Allerdings ergibt sich bei genauerem Hinsehen ein recht differenziertes Bild. Dies betrifft insbesondere die verschiedenen Komponenten von Lernmotivation (z. B. Erfolgserwartungen, N{\"u}tzlichkeiten/Instrumentalit{\"a}ten, intrinsische vs. extrinsische Folgenanreize, Sachinteressen, Selbstkontrollfunktionen etc.), die offenbar nicht gleichermaßen betroffen sind. Weiterhin wurden auch unterschiedliche Ver{\"a}nderungen je nach Fach, Klassenstufe und Geschlecht gefunden (z. B. Fend, 1997; Pekrun, 1993). {\"U}berdies sind hier individuell unterschiedliche Verlaufstypen der Lernmotivationsver{\"a}nderung zu erwarten (Fend, 1997; Rheinberg, 1980). Je nachdem, aufgrund welcher Komponenten ein Absinken der Lernmotivation zustande kommt, sind ganz andere Interventionsmaßnahmen angezeigt. Von daher ist ein Instrumentarium erforderlich, das die einzelnen Komponenten der Lernmotivation in mathematisch-naturwissenschaftlichen F{\"a}chern zu erfassen erlaubt. Ein solches Verfahren soll in einem zweij{\"a}hrigen Projekt theorieverankert entwickelt werden. Es st{\"u}tzt sich zun{\"a}chst auf das Erweiterte Kognitive Modell zur Lernmotivation (Heckhausen \& Rheinberg, 1980; Rheinberg, 1989), des weiteren auf Interessenkonzepte (Krapp, 1992, 1998) sowie auf die Handlungskontroll- bzw. die PSI-Theorie (Kuhl, 1987, 1998). Es soll die Lernmotivation in ihren Komponenten so erfassen, dass spezifische Interventionen hergeleitet bzw. schon bew{\"a}hrte fallbezogen platziert werden k{\"o}nnen. Solche Interventionen sind f{\"u}r m{\"o}gliche Anschlussprojekte im DFG-Schwerpunktprogramm "Bildungsqualit{\"a}t" vorgesehen. In einem altersgestaffelten einj{\"a}hrigen L{\"a}ngsschnitt wird im jetzigen Projekt mit diesem Instrument die Ver{\"a}nderung dieser Komponenten in den F{\"a}chern Mathematik und Physik auf der Sekundarstufe I erhoben. Gewonnen werden dabei klassenstufenspezifische Ver{\"a}nderungen der Lernmotivationskomponenten sowie (via Typenanalysen) verschiedene Entwicklungstypen in der mathematisch-naturwissenschaftlichen Lernmotivation. Dies sind Basisinformationen, die f{\"u}r die Entwicklung, Platzierung und Effektsicherung nachfolgender Interventionsmaßnahmen ben{\"o}tigt werden. Um im Vorfeld zwei (von vielen) Ansatzpunkten solcher Interventionen n{\"a}her abzukl{\"a}ren, wird bereits in der ersten Projektphase die Wirkung zweier Kontextfaktoren untersucht. Hier wird (a) das mathematisch-naturwissenschaftliche Anregungsklima des Elternhauses sowie (b) die Bezugsnorm-Orientierung des Mathematik- bzw. Physiklehrers erfasst. Von beiden Kontextfaktoren sind Auswirkungen auf spezifische Komponenten der mathematisch-naturwissenschaftlichen Lernmotivation zu erwarten. Dies ist jedoch vorweg genauer abzukl{\"a}ren, ehe man die Kosten von Interventionen investiert. Das Instrumentarium (PMI) wird von Mai bis September 2000 entwickelt. Die einj{\"a}hrige L{\"a}ngsschnittstudie beginnt dann im Oktober 2000. Geplant sind drei Messzeitpunkte jeweils auf den Klassenstufen 5 bis 9 (Kombiniertes L{\"a}ngs- und Querschnittdesign)}, subject = {Lernmotivation}, language = {de} } @article{FellenzSchnell2023, author = {Fellenz, Carolin D. and Schnell, Susanne}, title = {F{\"o}rderung der professionellen Wahrnehmung von angehenden Mathematiklehrkr{\"a}ften durch Reflexion}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-63146}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-631468}, pages = {271 -- 277}, year = {2023}, abstract = {Sowohl Professionelle Wahrnehmung als auch Reflexionskompetenzen sind wichtige Voraussetzungen f{\"u}r die Professionalisierung von (angehenden) Mathematiklehrkr{\"a}ften. Bew{\"a}hrt hat sich zur F{\"o}rderung der Einsatz von Videovignetten, wobei das Einnehmen einer interpretativen Grundhaltung Studierenden oft schwerf{\"a}llt. Im vorgestellten Projekt sollen daher Lehramtsstudierende der Grundschule mithilfe von Videovignetten mit Reflexionsanl{\"a}ssen zur Perspektiven{\"u}bernahme bei der Entwicklung ihrer professionellen Wahrnehmung mathematischer Denk- und Arbeitsprozesse von Kindern unterst{\"u}tzt werden. Methodologisch folgt das Projekt der fachdidaktischen Entwicklungsforschung. Dargestellt werden vier der zentralen Designprinzipien f{\"u}r die Konzeption einer entsprechenden Lernumgebung.}, language = {de} } @phdthesis{Kollosche2014, author = {Kollosche, David}, title = {Gesellschaft, Mathematik und Unterricht : ein Beitrag zum soziologisch-kritischen Verst{\"a}ndnis der gesellschaftlichen Funktionen des Mathematikunterrichts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70726}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Die vorliegende Studie untersucht die gesellschaftliche Rolle des gegenw{\"a}rtigen Mathematikunterrichts an deutschen allgemeinbildenden Schulen aus einer soziologisch-kritischen Perspektive. In Zentrum des Interesses steht die durch den Mathematikunterricht erfahrene Sozialisation. Die Studie umfasst unter anderem eine Literaturdiskussion, die Ausarbeitung eines soziologischen Rahmens auf der Grundlage des Werks von Michel Foucault und zwei Teilstudien zur Soziologie der Logik und des Rechnens. Abschließend werden Dispositive des Mathematischen beschrieben, die darlegen, in welcher Art und mit welcher pers{\"o}nlichen und gesellschaftlichen Folgen der gegenw{\"a}rtige Mathematikunterricht eine spezielle Geisteshaltung etabliert.}, language = {de} } @masterthesis{Dahl2021, type = {Bachelor Thesis}, author = {Dahl, Dorothee Sophie}, title = {Let's have FUN! Gamification im Mathematikunterricht}, doi = {10.25932/publishup-51593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515937}, school = {Universit{\"a}t Potsdam}, pages = {78}, year = {2021}, abstract = {Spiele und spieltypische Elemente wie das Sammeln von Treuepunkten sind aus dem Alltag kaum wegzudenken. Zudem werden sie zunehmend in Unternehmen oder in Lernumgebungen eingesetzt. Allerdings ist die Methode Gamification bisher f{\"u}r den p{\"a}dagogischen Kontext wenig klassifiziert und f{\"u}r Lehrende kaum zug{\"a}nglich gemacht worden. Daher zielt diese Bachelorarbeit darauf ab, eine systematische Strukturierung und Aufarbeitung von Gamification sowie innovative Ans{\"a}tze f{\"u}r die Verwendung spieltypischer Elemente im Unterricht, konkret dem Mathematikunterricht, zu pr{\"a}sentieren. Dies kann eine Grundlage f{\"u}r andere Fachgebiete, aber auch andere Lehrformen bieten und so die Umsetzbarkeit von Gamification in eigenen Lehrveranstaltungen aufzeigen. In der Arbeit wird begr{\"u}ndet, weshalb und mithilfe welcher Elemente Gamification die Motivation und Leistungsbereitschaft der Lernenden langfristig erh{\"o}hen, die Sozial- und Personalkompetenzen f{\"o}rdern sowie die Lernenden zu mehr Aktivit{\"a}t anregen kann. Zudem wird Gamification explizit mit grundlegenden mathematikdidaktischen Prinzipien in Verbindung gesetzt und somit die Relevanz f{\"u}r den Mathematikunterricht hervorgehoben. Anschließend werden die einzelnen Elemente von Gamification wie Punkte, Level, Abzeichen, Charaktere und Rahmengeschichte entlang einer eigens f{\"u}r den p{\"a}dagogischen Kontext entwickelten Klassifikation „FUN" (Feedback - User specific elements - Neutral elements) schematisch beschrieben, ihre Funktionen und Wirkung dargestellt sowie Einsatzm{\"o}glichkeiten im Unterricht aufgezeigt. Dies beinhaltet Ideen zu lernf{\"o}rderlichem Feedback, Differenzierungsm{\"o}glichkeiten und Unterrichtsrahmengestaltung, die in Lehrveranstaltungen aller Art umsetzbar sein k{\"o}nnen. Die Bachelorarbeit umfasst zudem ein spezifisches Beispiel, einen Unterrichtsentwurf einer gamifizierten Mathematikstunde inklusive des zugeh{\"o}rigen Arbeitsmaterials, anhand dessen die Verwendung von Gamification deutlich wird. Gamification offeriert oftmals Vorteile gegen{\"u}ber dem traditionellen Unterricht, muss jedoch wie jede Methode an den Inhalt und die Zielgruppe angepasst werden. Weiterf{\"u}hrende Forschung k{\"o}nnte sich mit konkreten motivationalen Strukturen, personenspezifischen Unterschieden sowie mit mathematischen Inhalten wie dem Probleml{\"o}sen oder dem Wechsel zwischen verschiedenen Darstellungen hinsichtlich gamifizierter Lehrformen besch{\"a}ftigen.}, language = {de} } @phdthesis{Vu2014, author = {Vu, Dinh Phuong}, title = {Using video study to investigate eighth-grade mathematics classrooms in Vietnam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72464}, school = {Universit{\"a}t Potsdam}, pages = {273}, year = {2014}, abstract = {The International Project for the Evaluation of Educational Achievement (IEA) was formed in the 1950s (Postlethwaite, 1967). Since that time, the IEA has conducted many studies in the area of mathematics, such as the First International Mathematics Study (FIMS) in 1964, the Second International Mathematics Study (SIMS) in 1980-1982, and a series of studies beginning with the Third International Mathematics and Science Study (TIMSS) which has been conducted every 4 years since 1995. According to Stigler et al. (1999), in the FIMS and the SIMS, U.S. students achieved low scores in comparison with students in other countries (p. 1). The TIMSS 1995 "Videotape Classroom Study" was therefore a complement to the earlier studies conducted to learn "more about the instructional and cultural processes that are associated with achievement" (Stigler et al., 1999, p. 1). The TIMSS Videotape Classroom Study is known today as the TIMSS Video Study. From the findings of the TIMSS 1995 Video Study, Stigler and Hiebert (1999) likened teaching to "mountain ranges poking above the surface of the water," whereby they implied that we might see the mountaintops, but we do not see the hidden parts underneath these mountain ranges (pp. 73-78). By watching the videotaped lessons from Germany, Japan, and the United States again and again, they discovered that "the systems of teaching within each country look similar from lesson to lesson. At least, there are certain recurring features [or patterns] that typify many of the lessons within a country and distinguish the lessons among countries" (pp. 77-78). They also discovered that "teaching is a cultural activity," so the systems of teaching "must be understood in relation to the cultural beliefs and assumptions that surround them" (pp. 85, 88). From this viewpoint, one of the purposes of this dissertation was to study some cultural aspects of mathematics teaching and relate the results to mathematics teaching and learning in Vietnam. Another research purpose was to carry out a video study in Vietnam to find out the characteristics of Vietnamese mathematics teaching and compare these characteristics with those of other countries. In particular, this dissertation carried out the following research tasks: - Studying the characteristics of teaching and learning in different cultures and relating the results to mathematics teaching and learning in Vietnam - Introducing the TIMSS, the TIMSS Video Study and the advantages of using video study in investigating mathematics teaching and learning - Carrying out the video study in Vietnam to identify the image, scripts and patterns, and the lesson signature of eighth-grade mathematics teaching in Vietnam - Comparing some aspects of mathematics teaching in Vietnam and other countries and identifying the similarities and differences across countries - Studying the demands and challenges of innovating mathematics teaching methods in Vietnam - lessons from the video studies Hopefully, this dissertation will be a useful reference material for pre-service teachers at education universities to understand the nature of teaching and develop their teaching career.}, language = {en} }